Page 155 - Engineering Mathematics Workbook_Final
P. 155

Complex Variables
                                                                                     −
                                                                             − −
                                  1                                      (a)  1, 1, 1
                                                 
            132.  Let  ( ) z =          for all  z C  such
                        f
                                e −  1                                   (b) 1, , 2
                                  z
                   that e   1. Then                                           
                         z
                                                                             − + +
                                                                                                  2
                                                                                             +
                   (a) f is meromorphic                                  (c)  1 1 2 , 1 2
                   (b)  the  only  singularities  of  f  are             (d)  1,1 2 ,1 2−  −   −  2
                   poles.
                                                                  137.  Which  of  the  following  is  possible
                   (c) f has infinitely many poles on the                value  for  the  imaginary  part  of
                   imaginary axis                                        ln ( )
                                                                               i

                   (d) Each pole of f is simple.
                                                                                                   
                                      z − 1                              (a)                  (b)
            133.  Let  ( ) z =                 then,                                             2
                        f
                                exp     2 i         − 1               
                                       z                               (c)                   (d)  
                                                                             4                     8
                   (a) f has an isolated singularity at
                   z = 0                                                                                [GATE]

                   (b)  f  has  a  removable  singularity  at     138.  e  is a periodic with a period of
                                                                           z
                   z=1

                   (c) f has infinitely many poles                       (a) 2                (b) 2 i 

                   (d) each pole of f is of order 1.                     (c)                  (d) i

            134.  If  z −  1 =  2 , then  zz − − =  ____                                     [GATE-1997-CE]
                                            z
                                                z
                                                                  139.  Which  one  of  the  following  is  not
            135.  Given       to    complex       numbers                true for complex number  z  and  z ?

                             5 3 i   and  z =
                   z =  5 +  ( )                   2  +  2i                                          1       2
                    1
                                              2
                                                    3                        z     z z
                                                                         (a)   1  =  1 2
                                     z                                       z        2
                   the argument of    1   in degree is                        2    z 2
                                     z 2                                 (b)  z + z    z +   z
                                                                                               2
                                                                              1
                                                                                   2
                                                                                         1
                   (a) 0                 (b) 30
                                                                         (c)  z −  z   z −   z
                                                                                   2
                                                                                               2
                                                                                         1
                                                                              1
                   (c) 60                (d) 90
                                                                         (d)  z +  z  2  +  z − z  2  = 2 z  2  + 2 z  2
            136.  If  1, ,    2   are  cube  roots  of  units,              1   2     1   2       1       2
                                            3
                   then the roots of (x −  ) 1 + 8 0  are                                    [GATE-2005-CE]
                                                  =




                                                            153
   150   151   152   153   154   155   156   157   158   159   160