Page 51 - Engineering Mathematics Workbook_Final
P. 51
Calculus
2
2
(x + 1 + ) 1 = 2 . The integral 308. The double integral
) ( y −
evaluates to 1 2 x 2x f ( , x y )dy dx under the
17
=
(a) 17 2 (b) transformation x = ( 4 1 v− ) , y uv is
2
transformed into
2
(c) (d) 0 2/3 ( 2 1 v− )
17 (a) 1/ 2 1/ (1 v− ) ( f u uv− ,uv )du dx
2/3 2 ( / 1 v )
−
−
(b) 1/ 2 1/ − ) ( f u uv ,uv )du dx
(1 v
− 2 2 ) )
−
306. The value of e ( x + y dxdy = (c) 1 2 ( / 1 v ( f u uv ,uv )u du dx
−
(1 v
0 0 2/3 1/ − )
−
(d) 2/3 2 ( / 1 v ) ( f u uv ,uv )u du dx
−
(a) (b) 1/ 2 1/ − )
(1 v
2
309. By change the order of integration
(c) (d)
4 2 2x f ( ,x y )dy dx may be represented
2
307. The evaluate the double integral 1 x
as
)+
y
8 ( / 2 1 2x y −
dx dy , we make the 2 2x
)
2 (a) f ( , x y dy dx
0 y / 2
0 x 2
2x − y y y
substitution u = and v = . 2
)
2 2 (b) f ( , x y dy dx
0 y
The integral will reduce to
4 y
)
4 2 (c) f ( ,x y dy dx
(a) 2udu dv
0 0 0 y / 2
x
2 2
)
4 1 (d) f ( ,x y dy dx [GATE]
(b) 2udu dv x 2 0
0 0
310. Changing the order of the integration
4 1 in the double integral
(c) udu dv
0 0
4 2
(d) udu dv [GATE-14-EE-SET2]
0 0
49

