Page 56 - Engineering Mathematics Workbook_Final
P. 56
Vector Calculus
( r r r ( r r ) and y + z = 2, then which of the
)
(II) div a r r = a r
ur r
following is (are) equal to C F dr
then,
?
(a) both statements are true 2
(b) only statement I is true (a) 0 0 1 (1 2 sin+ r )r dr d
(c) only statement II is true 1 2
(d) both statements are false (b) 0 2 0 1 2 + 3 sin d
[JAM GP 2010] 2 1
3
3
8. Let : f R → R be a scalar fields (c) 0 0 (1 2 sin + r )dr d
r
: v R → R be a vector field and let (d) 0 2 (1 sin + )d
3
3
r r
a R be a constant vector. If r
3
represent the position vector [JAM MA 2015]
$
$
+
x i + $ y j zk , then which one of the 10. Consider the vector field
ur
)
$
$
−
following is FALSE? F = r ( y i x j , WHERE ,
R
r
r
r
( )
$
(a) curl f v = grad ( ) f + f curl v r x i + $ y j and r = r
v
( )
r =
r . If the
(b) absolute value of the line integral
ur
r
F dr along the closed curve
2 2 2
div ( grad f + + 2 f C
( )) =
2
x 2 y 2 z : c x + 2 y = 2 a (oriented counter
(c) ( r r ) r r clockwise) is 2 , then is
curl a r = 2 a r
(a) -2 (b) -1
r r r
0
(d) div r 2 r = 0 , for r (c) 1 (d) 2
r
[JAM MA 2016]
11. The values of the line integral
[JAM MA 2018]
3
2
ur (3x + 2xy ) dx + ( x + x 2 ) dy
9. Let F be a vector field given by
ur from M (0, 0) to N (1, 1) along the paths
)
$
$
$
3
F ( , ,x y z = − y i + 2xy j + z k , for 2
: =
C 1 : y = x and C y x are,
2
( , ,x y z ) R 3 . If C is the curve of respectively
intersection of the surfaces x + 2 y 2 1 = (a) 2 and -1 (b) 3 and 3
54

