Page 69 - Engineering Mathematics Workbook_Final
P. 69

Vector Calculus

                    x +  2  y =  2  9  included in the first octant      (c) (4/3     +  +   ) 2
                                                                                 ) (a b c
                                         5
                               0
                   between  z =  and  z =  where
                                                                         (d) none
                          +
                    f =  zi x j yzk .
                               −
                                                                  96.    Evaluate
                   (a) 40                (b) 60
                                                                                                   
                                                                            (    x −  yz ) i − 2x y j + 2k   n ds
                                                                                           2
                                                                               3
                   (c) 80                (d) 100                          S
                                                                         where S denotes the surface of the
                        Volume Integral                                  rectangular parallelepiped 0 x a    ,
                                                                                      
                                                                                         
                                                                               
                                                                         0   y b, 0 z c  is
            93.    Find       dV  where  =  xyz  and
                           V                                                  2
                   ‘V’ is the volume of the region bounded               (a)   a bc            (b)  abc
                   by  x = ,  y = ,  y = ,  z =  x ,  z = .                   3                     3
                          0
                                                 2
                                 0
                                        6
                                                        4
                                                                                3
                                                                             ab c                 abc
                   (a) 162               (b) 172                         (c)                   (d)
                                                                               3                    3
                   (c) 182               (d) 192


                                                                              Stokes Theorem
               Gauss – Divergence Theorem
                                                                                   
                                                                                                    −
                                                                  97.    Evaluate  (e dx +  x  2y dy dz )  where
            94.    Evaluate    f   n ds  where S is the                          C
                             S                                           ‘C’ is the curve  x +  2  y =  2  4  and z = 2.
                                                        0
                   surface of tetrahedron bounded by  x = ,
                    y =  0,  z =  and the place                          (a) 0                 (b) 1
                              0
                    x + + =     1 and  f =  xyi z j + 2yzk               (c) 2                 (d) 3
                                              +
                                                 2
                            z
                        y
                       3                    1                     98.    Evaluate    f   dr  where
                   (a)                   (b)                                       C
                       8                    8                             f = (2x y i yz i yz j y zk−  ) −  2  −  2  −  2   and

                       8                     3                           ‘C’ is the boundary of the upper half of
                   (c)                   (d)                                                   2    2    2
                       2                     5                           surface of the sphere  x +  y +  z = 1
                                                                         above the xy-plane.
                                     +
                              +
            95.    If  f =  ax i by j czk  where a, b , c
                                                                         (a) 0                 (b) 1
                   are constants and ‘s’ is the surface of a
                   unit sphere then    f   n ds =                     (c) 2                 (d) none
                                     S
                                                                  99.  If  = 3x y y z then grade at (1, 2, 1−  −  )
                                                                                 −
                                                                                     3 2
                                                                               2
                   (a) (4/3 ) (a b c  +  +  )
                                                                      is
                   (b) 0                                              a)  12i−  − 9 j − 16k


                                                             67
   64   65   66   67   68   69   70   71   72   73   74