Page 67 - Engineering Mathematics Workbook_Final
P. 67

Vector Calculus

                                                                                                    2
                   (a)  8 −              (b) 3                           (a)                  (b) 

                                                                                              2
                   (c)  3        (d) 2                                   (c) 2        (d) 2
            76.    The value of p for which the vector field                  Vector Identities
                   V =  (2x +  y i +        2z ) j + (x +  pz )k
                                ) (3x −
                                                                                                j
                                                                                      y
                    is solenodial                                 80.    If  F = (x + +    ) 1 i + − (x +  ) y k
                                                                         then  (
                   (a) 0                 (b) 2                                         F ) =

                   (c)  2−               (d) 1                           (a) zero              (b) F

                                                                         (c) 2                 (d) None

                                Curl
                                                                                  +
                                                                                        +
                                                                             =
                                                                  81.    If r xi y j zk  and r =       r  then
            77.    If the velocity vector in a two-                      grad (1/ r) is
                   dimensional flow fluid is given by
                   V =  2xy i + (2y −   x 2  ) j  then the curl          (a)   r               (b)   r
                                    2
                                                                             r 2                   r 3
                   V  will be
                                                                               r                     r
                                                                         (c)  −                (d) −
                   (a) 2y j              (b) 6yk                               r 2                  r 3


                                            −
                   (c) zero              (d)  4xk                        If r xi y j zk=  +  +   and r =
                                                                  82.                                  r  then
            78.    The value of a, b, c for which                              r  

                   V =  (x + +      ) (bx +    3y −   ) z j              div      r 3       =
                             y az i +
                                  )
                              +
                         +
                   + (3x cy z k  is an irrotational.                             
                                                                         (a) 0                 (b) 1
                   (a) a = 1, b =  3, c = 1
                                                                             −
                                                                         (c)  1                (d) 2
                                        3
                   (b) a = 1, b = 1, c =
                                                                                  +
                                                                             =
                                                                                        +
                                                                  83.    If r xi y j zk  and r =       r  then
                   (c) a =  3, b = 1, c = − 1
                                                                              ( )
                                                                                 n
                                                                         curl r r =
                   (d) None
            79.    A rigid body is rotating with constant                (a) 0                 (b)  1−
                   angular velocity   about a fixed axis. If
                   V is the velocity of a point of the body              (c) r                 (d)  r
                   then curl V is equal to





                                                             65
   62   63   64   65   66   67   68   69   70   71   72