Page 70 - Engineering Mathematics Workbook_Final
P. 70

Vector Calculus

                b) 12i −  9 j −  16k                                  of  2i −  j −  2k is

                c) 12i +  9 j +  16k                                      37                      14
                                                                      (a)                      (b)
                   −
                d)  12i + 9 j + 16k                                        3                       3
            100. The unit normal vector to the surface                (c)  28                  (d) 2

                 : x −  y + x zat (1,1, 2 is                              3
                                         )
                         3
                     3
                             2
                                       −
                                                                  107. The directional derivative of
                     i − − 3 j k             i −  3 j +  k
                           +
                (a)                      (b)                            ( ,x y =  )  x                 )
                         11                      11                             x +  y 2   at the point (0,2 along a
                                                                                 2
                                                   −
                    i +  3 j +  k            i +  3 j k                                     0
                (c)                      (d)                          line  making  angle  30 .  With  the  positive
                        11                       11
                                                                      direction of x axis is
            101. The greatest value of directional derivative
                                                                           3                        3
                                      )
                of  xy +  yz at (2, 1,1 is                            (a)   8                  (b)   4
                      2
                           3
                                  −
                (a)  19                  (b)  2 19                         3                      1
                                                                      (c)                      (d)  8
                (c)  11                  (d)  2 11                         2
                                                                                                    2    2
                                  1                             108. The directional derivative of  x +  y at
                                                                                                    3
                                                                                                         3
            102. The value of    2           =  _____ where  r is the
                                  r 
                                                                       8,8
                                                                      ( ) along the line  y = directed away
                                                                                             x
                position vector of any point.
                                                                      from the origin is ____
                (a) 0                    (b) 1
                                                                           3                        3
                (c) 2                    (d)3                         (a)                      (b)
                                                                            2                      2
            103. If  F = ( x +  3y ) i + ( y +  2z ) j + ( x +  pz ) k is
                                                                           2                        2
                solenoidal vector then the value of P =____           (c)                      (d)
                                                                           3                       3
                (a) 0                    (b) 1
                                                                  109. Let  ( , x y =  −  3  −   3
                                                                           f
                                                                                 ) kxy x y xy where K is real
                (c) 2                    (d) -2
                        n
            104. If  F = r r is solvenoidal then n = ______           constant. If the directional derivative of f at
                (a) -1                   (b) -2                       point (1,2) in the direction of a unit vector
                (c) -3                   (d) -4                          1       1      15
                                                                      −     i −     j is    then the value of K is
                              
            105. If  F =  r and  .F =  0then n = ___                      2       2       2
                         n
                                                                      ____
                (a) -1                   (b) -2
                                                                      (a) 2                    (b) 4
                (c) -3                   (d) -4
                                                                      (c) 1                    (d) -2
            106. The directional derivative of surface

                              2
                  : x yz +  2  4xz at (1, 2, 1−  −  )in the direction

                                                             68
   65   66   67   68   69   70   71   72   73   74   75