Page 71 - Engineering Mathematics Workbook_Final
P. 71

Vector Calculus


            110. The value of     ˆ . F n ds where S is the          (c)  4                  (d)  8
                              S                                            3                       3
                surface of the sphere  x +  y +  z =  4where
                                                2
                                           2
                                      2
                                                                                                        2
                                                                                                            ˆ
                                                                  114. The  value  of     ( 4xi −  2y j +  2  z k  ).n ds
                                          =
                                                    +
                 ˆ n is the unit normal and  F xi +  yj zk is                           s
                                                                      where S is bounted by  x +  y =  4,z = and
                                                                                                   2
                                                                                              2
                                                                                                            0
                _____
                                                                       z = 3is
                (a) 32                  (b) 16
                                                                      (a) 16                  (b)  48
                (c) 8                   (d)  64
                                                                      (c) 32                  (d) 84
            111. The flux of the vector filed
                                                                  115. The value of
                            +
                 F xi +   yj zk  flowing out through the
                   =
                                                                        s   ( (  x −  yz ) i − 2x yj +  zk )  ˆ .nds where S is
                                                                                         2
                                                                             3
                                       x 2  y 2  z 2
                surface of the ellipsoid   +   +    = 1
                                       a 2  b 2  c 2                  the surface of the cube bounded by
                                                                        = =
                 a  b    0is                                        x y z =    2 and co-ordinate planes is ___
                        c
                (a)  abc                 (b) 3 abc
                    
                                             
                (c)  2 abc              (d)  4 abc
                                )
            112. Let  w =  (  , ,x y z  R 3  :1  x +  y + z    4     32                      56
                                                2
                                                    2
                                           2
                                                                      (a)                      (b)
                and  F w → defined by                                      3                       3
                            R
                             3
                       :
                         x
                        ( , , y z )                                   (c)  16                  (d)  64
                 F =              3  for ( , , y z                       3                        3
                                        x
                                              ) w . If  
                     ( x +  2  y +  2  z 2 ) 2                                    y
                                                                  116. Let  I =   e  dx + (e  / y n x +  ) x dy where C is
                                                                                                    ,
                denotes the boundary of  oriented by the                     c x
                                                                      the positive oriented boundary of the region
                out ward normal  ˆ nto  , then    ˆ . F n ds is
                                                                                                         1
                                                                      enclosed by Y = +    2 ,   2
                                                                                      1 x y = and  x =
                (a) 0                    (b)  4                                                           2
                (c) 8                   (d) 12                      then the value of I = _____
            113. Let  S  be  the  sphere  x +  y +  z = 1.  The           1                        5
                                            2
                                                 2
                                        2
                                                                      (a)  8                   (b)   24
                value of surface integral
                                                                          7                       3
                    ( sin ,cosx  y  2  x ,2z z sin y ) ( . , ,x y z is      (c)              (d)
                                                      )
                                       −
                 s                                                        24                      8
                ____                                                         C =  (   , x  ) y  R 2 ,max  1
                                                                  117. Let                         , x y =  the
                                            2
                (a)                      (b)                          value        of         line       integral
                    3                        3

                                                             69
   66   67   68   69   70   71   72   73   74   75   76