Page 65 - Engineering Mathematics Workbook_Final
P. 65

Vector Calculus


            63.    The    yzdx + (xz +   ) 1 dy +  xydz ,               (c)  x +  1 2  x +  2 2  2x x
                                                                                          1 3
                        C
                   where C is a simple closed curve, equals              (d) (2 , x x +  3 , x  1 ) x           [IISC 2002]
                                                                                    1
                                                                                1
                   ____________
                                                                  67.    A unit normal vector to the curve
                   (a) 0
                                                                              ( 
                                                                                , , 
                                                                                   2
                                                                         C  : x x x R      ) in the plane  R  at
                                                                                                           2
                   (b) 3xyz +  y
                                                                         the point (0, 0) is given by _________
                   (c) length of C
                                                                                                         )
                                                                                                   −
                                                                         (a) (0, 1 −  )        (b) ( 1,0
                   (d) area enclosed by C          [IISC 2005]
                                                                              1     1  
                                           2
            64.    Let D be the square in  R  with vertices              (c)      ,            (d) (1, 0)
                   (0, 0) (1, 0) (0, 1) (1, 1). The integral                   2    2 
                                  
                   ∫        where  D  is the boundary of
                                                                                                     [IISC 2002]
                   the square, is equal to ________
                                                                                               3
                                                                             F
                   (a) 0                 (b) 0.5                  68.    Let  : R −  3    0 →  R  be the vector
                                                                                                   x
                                                                                         F
                   (c) 1                 (d) 1.5                         field defined by  ( ) x =     where
                                                                                                   x
                                               [IISC 2005]
                                                                         x = ( , , x x      3    0  and
                                                                                       ) R −
                                                                               x
                                                                                1
                                                                                      3
                                                                                   2
            65.    Let
                                                                                  2
                                                                                        2
                                                                                             2
                                       ) ( x y +
                   V =  2xyzi + ( x z y j +   2   3z 2 ) k .              x =    x +  x +  x . Then the
                                   +
                                 2
                                                                                             3
                                                                                        2
                                                                                  1
                                                                         divergence of F (x) is ____
                                              ̅
                   Then the magnitude of curl    at (1, 1, 1)
                   is ____                                                                         1
                                                                         (a)  x                (b)
                   (a) not defined                                                                  x
                   (b) 1                                                      2
                                                                         (c)                   (d) 2   x
                   (c) 0                                                      x
                   (d) strictly greater than 1    [IISC 2005]
                                                                                                     [IISC 2003]
                             3
                                   3
            66.    Let  :V R →   R  be the vector field           69.    Let G be the tetrahedron in  R  with
                                                                                                      3
                   defined by                                            vertices (0, 0, 0) (1, 0, 0) (0, 1, 0) and (0,
                               : x +
                                                     2
                   V  ( , ,x x x 3  ) ( 1 2  x 2 2 , x x +  x 2 3 , x x +  x x  )  0, 1). The outward flux of the vector
                                                     2
                       1
                                          1 2
                                                         1 3
                          2
                    the divergence of V is ________                      field
                   (a)  4x +  x                                   V  ( , ,x y z ) 2 cosz=  ( ) ( z−  2  +  ) 1 j yz+  2 sin xy
                                                                                     xy i
                                                                                                             ( )k
                         1
                               3
                                                                          across the boundary of G is _________
                   (b) 0

                                                             63
   60   61   62   63   64   65   66   67   68   69   70