Page 69 - BE Book PESD 2021 22
P. 69
Bartley, J.K., Kah, L.C., McWilliams, J.L., Stagner, A.F., 2007, Carbon isotope
chemostratigraphy of the Middle Riphean type section (Avzyan Formation, Southern Urals,
Russia): Signal recovery in a fold-and-thrust belt, Chemical Geology, 237(1), 211–232.
Canefield, D.E., Poulton, S.W., Narbonne, G.M., 2007, Late-Neoproterozoic Deep-Ocean
Oxygenation and the Rise of Animal Life, Science, 315(5808), 92–95.
Fralick, P., Planavsky, N., Burton, J., Jarvis, I., Addison, W.D., Barrett, T.J., Brumpton,
G.R., 2017, Geochemistry of Paleoproterozoic Gunflint Formation carbonate: Implications
for hydrosphere-atmosphere evolution, Precambrian Research, 290, 126–146.
George, B.G., Ray, J.S., 2020, Depositional history of the Mesoproterozoic Chhattisgarh
Basin, central India: insights from geochemical provenance of siliciclastic sediments,
International Geology Review, DOI: 10.1080/00206814.2020.1712557
George, B.G., Ray, J.S., and Kumar, S., 2019, Geochemistry of carbonate formations of the
Chhattisgarh Supergroup, central India: Implications for Mesoproterozoic global events,
Canadian Journal of Earth Sciences, 56, 335–346. doi:10.1139/cjes-2018-0144
George, B.G., Ray, J.S., Shukla, A.D., Chatterjee, A., Awasthi, N., and Laskar, A.H., 2018,
Stratigraphy and geochemistry of the Balwan Limestone, Vindhyan Supergroup, India:
13
evidence for the Bitter Springs C anomaly, Precambrian Research, 313, 18–30.
doi:10.1016/j.precamres.2018.05.008.
Gilleaudeau, G.J., Frei, R., Kaufman, A.J., Kah, L.C., Azmy, K., Bartley, J.K.,
Chernyavskiy, P., Knoll, A.H., 2016, Oxygenation of the mid-Proterozoic atmosphere: clues
from chromium isotopes in carbonates, Geochemical Perspectives Letters, 2,178–187.
Guhey, R., Kotha, M., 2017, Geochemical Characteristics of Proterozoic Carbonate
Lithofacies of Indravati Basin, Chhatisgarh, Central India: Implication of Depositional and
Diagenetic History, Jour. Indian Association of Sedimentologists, 34(1 & 2), 39-57
Guo, H., Du, Y., Kah, L.C., Hu, C., Huang, J., Huang, H., Yu, W., Song, H., 2015, Sulfur
isotope composition of carbonate-associated sulfate from the Mesoproterozoic Jixian Group,
North China: Implications for the marine sulfur cycle, Precambrian Research, 266, 319–336.
Holland, H.D., 2006, The oxygenation of the atmosphere and oceans, Philosophical
Transactions of the Royal Society B: Biological Sciences, 361(1470), 903–915.
Hood, A. VAN S., Wallace, M.W., 2014, Marine cements reveal the structure of an anoxic,
ferruginous Neoproterozoic ocean, Journal of the Geological Society, 171(6), 741–744.
Huang, K.-J., Shen, B., Lang, X.-G., Tang, W.-B., Peng, Y., Ke, S., Kaufman, A.J., Ma, H.-
R., Li, F.-B., 2015, Magnesium isotopic compositions of the Mesoproterozoic dolostones:
Implications for Mg isotopic systematics of marine carbonates, Geochimica et
Cosmochimica Acta, 164, 333–351.
Kah, L.C., Lyons, T.W., Chesley, J.T., 2001, Geochemistry of a 1.2 Ga carbonate-evaporite
succession, northern Baffin and Bylot Islands: implications for Mesoproterozoic marine
evolution, Precambrian Research, 111(1), 203–234.
Kah, L.C., Lyons, T.W., Frank, T.D., 2004, Low marine sulphate and protracted
oxygenation of the Proterozoic biosphere, Nature, 431(7010), 834–838.
Kah, L.C., Bartley, J.K., Teal, D.A., 2012, Chemostratigraphy of the Late Mesoproterozoic
Atar Group, Taoudeni Basin, Mauritania: Muted isotopic variability, facies correlation, and
global isotopic trends, Precambrian Research, 200–203, 82–103.
<< 63

