Page 70 - BE Book PESD 2021 22
P. 70
Kreuzer, H., Harre, W, Schnitzer W.A., Murti, K.S., Srivastava, N.K., 1977, K-Ar Dates of
two glauconites from the Chandarapur Series (Chhattisgarh / India): On the stratigraphic
status of the late Precambrian basin in Central India, Geol. Jb., 28, 23-36.
Lawrence, M.G., Kamber, B.S., 2006, The behaviour of the rare earth elements during
estuarine mixing – revisited, Mar. Chem., 100, 147–161.
Luo, G., Ono, S., Huang, J., Algeo, T.J., Li, C., Zhou, L., Robinson, A., Lyons, T.W., Xie,
S., 2015, Decline in oceanic sulfate levels during the early Mesoproterozoic, Precambrian
Research, 258, 36–47.
Lyons, T.W., Anbar, A.D., Severmann, S., Scott, C., Gill, B.C., 2009, Tracking euxinia in
the ancient ocean: A multiproxy perspective and Proterozoic case study, Annual Review of
Earth and Planetary Sciences, 37(1), 507–534.
Lyons, T.W., Reinhard, C.T., Planavsky, N.J., 2014., The rise of oxygen in Earth’s early
ocean and atmosphere, Nature 506(7488), 307–315.
Maheshwari, A., Sial, A.N., Guhey, R., Ferreira, V.P., 2005, C-isotope Composition of
Carbonates from Indravati Basin, India: Implications for Regional Stratigraphic Correlation,
Gondwana Research (Gondwana Newsletter Section), 8(4), 603-610.
Mainkar, D., Lehmann, B., Haggerty, S.E., 2004, The crater-facies kimberlite system of
Tokapal, Bastar district, Chhatisgarh, India, Lithos, 76, 201-217
McFadden, K.A., Huang, J., Chu, X., et al., 2008, Pulsed oxygenation and biological
evolution in the Ediacaran Doushantuo, Formation, PNAS, 105, 3197-3202.
Mohanty, S.P., Barik, A., Sarangi, S., Sarkar, A., 2015, Carbon and oxygen isotope
systematics of a Paleoproterozoic cap-carbonate sequence from the Sausar Group, Central
India, Palaeogeography, Palaeoclimatology, Palaeoecology, 417, 195–209.
Mukherjee, A., Bickford, M.E., Hietpas, J., Schieber, J., Basu, A., 2012, Implications of a
newly dated ca. 1000-Ma rhyolitic tuff in the Indravati Basin, Bastar Craton, India, The
Journal of Geology, 120, 477-485
Och, L.M., Shields-Zhou, G.A., 2012, The Neoproterozoic oxygenation event:
Environmental perturbations and biogeochemical cycling, Earth-Science Reviews, 110, 26-
57.
Ostrander, C.M., Nielsen, S.G., Owens, J.D., Kendall, B., Gordon, G.W., Romaniello, S.J.,
Anbar, A.D., 2019, Fully oxygenated water columns over continental shelves before the
Great Oxidation Event, Nature Geoscience, 12(3), 186–191
Patranabis-Deb, S., Słowakiewicz, M., Tucker, M.E., Pancost, R.D., and Bhattacharya, P.,
2016, Carbonate rocks and related facies with vestiges of biomarkers: clues to redox
conditions in the Mesoproterozoic ocean, Gondwana Research, 35, 411–424.
Planavsky, N.J., Mcgoldrick, P., Scott, C.T., Li, C., Reinhard, C.T., Kelly, A.E., Chu, X.,
Bekker, A., Love, G.D., Lyons, T.W., 2011, Widespread iron-rich conditions in the mid-
Proterozoic ocean, Nature, 477(7365), 448–451.
Rasmussen, B., Fletcher, I.R., Brocks, J.J., Kilburn, M.R., 2008, Reassessing the first
appearance of eukaryotes and cyanobacteria, Nature, 455, 1101-1104.
Ray, J.S., Veizer, J., and Davis, W.J. 2003, C, O, Sr and Pb isotope systematics of carbonate
sequences of the Vindhyan Supergroup, India: age, diagenesis, correlations and implications
for global events, Precambrian Research, 121,103–140.
<< 64

