Page 31 - Euclid's Elements of Geometry
P. 31

ST	EW      aþ.






                                                                                            ELEMENTS BOOK 1



            δὴ δειχθήσεται, ὅτι οὐδὲ ἐπὶ τὰ Α, Γ· αἱ δὲ ἐπὶ μηδέτερα τὰ  GEF, the external angle AEF is equal to the interior
            μέρη συμπίπτουσαι παράλληλοί εἰσιν· παράλληλος ἄρα ἐστὶν and opposite (angle) EFG. The very thing is impossible
            ἡ ΑΒ τῇ ΓΔ.                                         [Prop. 1.16]. Thus, being produced, AB and CD will not
               ᾿Εὰν ἄρα εἰς δύο εὐθείας εὐθεῖα ἐμπίπτουσα τὰς ἐναλλὰξ meet together in the direction of B and D. Similarly, it
                                   khþ                          and CD are parallel.
            γωνίας ἴσας ἀλλήλαις ποιῇ, παράλληλοι ἔσονται αἱ εὐθεῖαι· can be shown that neither (will they meet together) in
            ὅπερ ἔδει δεῖξαι.                                   (the direction of) A and C. But (straight-lines) meeting
                                                                in neither direction are parallel [Def. 1.23]. Thus, AB


                                                                   Thus, if a straight-line falling across two straight-lines
                                                                makes the alternate angles equal to one another then
                                                                the (two) straight-lines will be parallel (to one another).
                                                                (Which is) the very thing it was required to show.

                                      .
                                                                                 Proposition 28
               ᾿Εὰν εἰς δύο εὐθείας εὐθεῖα ἐμπίπτουσα τὴν ἐκτὸς    If a straight-line falling across two straight-lines
            γωνίαν τῇ ἐντὸς καὶ ἀπεναντίον καὶ ἐπὶ τὰ αὐτὰ μέρη ἴσην makes the external angle equal to the internal and oppo-
            ποιῇ ἢ τὰς ἐντὸς καὶ ἐπὶ τὰ αὐτὰ μέρη δυσὶν ὀρθαῖς ἴσας, site angle on the same side, or (makes) the (sum of the)
            παράλληλοι ἔσονται ἀλλήλαις αἱ εὐθεῖαι.             internal (angles) on the same side equal to two right-
                                                                angles, then the (two) straight-lines will be parallel to
                                                                one another.
                           Ε                                                  E


                   Α           Η                      Β               A            G                     B







                   Γ                   Θ              ∆               C                    H             D



                                             Ζ                                                   F
               Εἰς γὰρ δύο εὐθείας τὰς ΑΒ, ΓΔ εὐθεῖα ἐμπίπτουσα ἡ  For let EF, falling across the two straight-lines AB
            ΕΖ τὴν ἐκτὸς γωνίαν τὴν ὑπὸ ΕΗΒ τῇ ἐντὸς καὶ ἀπεναντίον and CD, make the external angle EGB equal to the in-
            γωνίᾳ τῇ ὑπὸ ΗΘΔ ἴσην ποιείτω ἢ τὰς ἐντὸς καὶ ἐπὶ τὰ  ternal and opposite angle GHD, or the (sum of the) in-
            αὐτὰ μέρη τὰς ὑπὸ ΒΗΘ, ΗΘΔ δυσὶν ὀρθαῖς ἴσας· λέγω, ternal (angles) on the same side, BGH and GHD, equal
            ὅτι παράλληλός ἐστιν ἡ ΑΒ τῇ ΓΔ.                    to two right-angles. I say that AB is parallel to CD.
               ᾿Επεὶ γὰρ ἴση ἐστὶν ἡ ὑπὸ ΕΗΒ τῇ ὑπὸ ΗΘΔ, ἀλλὰ ἡ ὑπὸ  For since (in the first case) EGB is equal to GHD, but
            ΕΗΒ τῇ ὑπὸ ΑΗΘ ἐστιν ἴση, καὶ ἡ ὑπὸ ΑΗΘ ἄρα τῇ ὑπὸ EGB is equal to AGH [Prop. 1.15], AGH is thus also
            ΗΘΔ ἐστιν ἴση· καί εἰσιν ἐναλλάξ· παράλληλος ἄρα ἐστὶν ἡ  equal to GHD. And they are alternate (angles). Thus,
            ΑΒ τῇ ΓΔ.                                           AB is parallel to CD [Prop. 1.27].
               Πάλιν, ἐπεὶ αἱ ὑπὸ ΒΗΘ, ΗΘΔ δύο ὀρθαῖς ἴσαι εἰσίν,  Again, since (in the second case, the sum of) BGH
            εἰσὶ δὲ καὶ αἱ ὑπὸ ΑΗΘ, ΒΗΘ δυσὶν ὀρθαῖς ἴσαι, αἱ ἄρα and GHD is equal to two right-angles, and (the sum
            ὑπὸ ΑΗΘ, ΒΗΘ ταῖς ὑπὸ ΒΗΘ, ΗΘΔ ἴσαι εἰσίν· κοινὴ of) AGH and BGH is also equal to two right-angles
            ἀφῃρήσθω ἡ ὑπὸ ΒΗΘ· λοιπὴ ἄρα ἡ ὑπὸ ΑΗΘ λοιπῇ τῇ    [Prop. 1.13], (the sum of) AGH and BGH is thus equal
            ὑπὸ ΗΘΔ ἐστιν ἴση· καί εἰσιν ἐναλλάξ· παράλληλος ἄρα to (the sum of) BGH and GHD. Let BGH have been
            ἐστὶν ἡ ΑΒ τῇ ΓΔ.                                   subtracted from both. Thus, the remainder AGH is equal
               ᾿Εὰν ἄρα εἰς δύο εὐθείας εὐθεῖα ἐμπίπτουσα τὴν ἐκτὸς to the remainder GHD. And they are alternate (angles).
            γωνίαν τῇ ἐντὸς καὶ ἀπεναντίον καὶ ἐπὶ τὰ αὐτὰ μέρη ἴσην Thus, AB is parallel to CD [Prop. 1.27].


                                                              31
   26   27   28   29   30   31   32   33   34   35   36