Page 459 - Jolliffe I. Principal Component Analysis
P. 459
References
424
Chatfield, C. and Collins, A.J. (1989). Introduction to Multivariate
Analysis. London: Chapman and Hall.
Cheng, C.-L. and van Ness, J.W. (1999). Statistical Regression with
Measurement Error. London: Arnold.
Chernoff, H. (1973). The use of faces to represent points in k-dimensional
space graphically. J. Amer. Statist. Assoc., 68, 361–368.
Cherry, S. (1997). Some comments on singular value decomposition
analysis. J. Climate, 10, 1759–1761.
Chipman, H.A. and Gu, H. (2002). Interpretable dimension reduction. To
appear in J. Appl. Statist.
Chouakria, A., Cazes, P. and Diday, E. (2000). Symbolic principal com-
ponent analysis. In Analysis of Symbolic Data. Exploratory Methods for
Extracting Statistical Information from Complex Data, eds. H.-H. Bock
and E. Diday, 200–212. Berlin: Springer-Verlag.
Clausen, S.-E. (1998). Applied Correspondence Analysis: An Introduction.
Thousand Oaks: Sage.
Cleveland, W.S. (1979). Robust locally weighted regression and smoothing
scatterplots. J. Amer. Statist. Assoc., 74, 829–836.
Cleveland, W.S. (1981). LOWESS: A program for smoothing scatterplots
by robust locally weighted regression. Amer. Statistician, 35, 54.
Cleveland, W.S. and Guarino, R. (1976). Some robust statistical procedures
and their application to air pollution data. Technometrics, 18, 401–409.
Cochran, R.N. and Horne, F.H., (1977). Statistically weighted principal
component analysis of rapid scanning wavelength kinetics experiments.
Anal. Chem., 49, 846–853.
Cohen, S.J. (1983). Classification of 500 mb height anomalies using
obliquely rotated principal components. J. Climate Appl. Meteorol., 22,
1975–1988.
Cohn, R.D. (1999). Comparisons of multivariate relational structures in
serially correlated data. J. Agri. Biol. Environ. Statist., 4, 238–257.
2
Coleman, D. (1985). Hotelling’s T , robust principal components, and
graphics for SPC. Paper presented at the 1985 Annual Meeting of the
American Statistical Association.
Commandeur, J.J.F, Groenen, P.J.F and Meulman, J.J. (1999). A distance-
based variety of nonlinear multivariate data analysis, including weights
for objects and variables. Psychometrika, 64, 169–186.
Compagnucci, R.H., Araneo, D. and Canziani, P.O. (2001). Principal se-
quence pattern analysis: A new approach to classifying the evolution of
atmospheric systems. Int. J. Climatol., 21, 197–217.
Compagnucci, R.H. and Salles, M.A. (1997). Surface pressure patterns
during the year over Southern South America. Int. J. Climatol., 17,
635–653.
Cook, R.D. and Weisberg, S. (1982). Residuals and Influence in Regression.
New York: Chapman and Hall.

