Page 459 - Jolliffe I. Principal Component Analysis
P. 459

References
                              424
                              Chatfield, C. and Collins, A.J. (1989). Introduction to Multivariate
                                Analysis. London: Chapman and Hall.
                              Cheng, C.-L. and van Ness, J.W. (1999). Statistical Regression with
                                Measurement Error. London: Arnold.
                              Chernoff, H. (1973). The use of faces to represent points in k-dimensional
                                space graphically. J. Amer. Statist. Assoc., 68, 361–368.
                              Cherry, S. (1997). Some comments on singular value decomposition
                                analysis. J. Climate, 10, 1759–1761.
                              Chipman, H.A. and Gu, H. (2002). Interpretable dimension reduction. To
                                appear in J. Appl. Statist.
                              Chouakria, A., Cazes, P. and Diday, E. (2000). Symbolic principal com-
                                ponent analysis. In Analysis of Symbolic Data. Exploratory Methods for
                                Extracting Statistical Information from Complex Data, eds. H.-H. Bock
                                and E. Diday, 200–212. Berlin: Springer-Verlag.
                              Clausen, S.-E. (1998). Applied Correspondence Analysis: An Introduction.
                                Thousand Oaks: Sage.
                              Cleveland, W.S. (1979). Robust locally weighted regression and smoothing
                                scatterplots. J. Amer. Statist. Assoc., 74, 829–836.
                              Cleveland, W.S. (1981). LOWESS: A program for smoothing scatterplots
                                by robust locally weighted regression. Amer. Statistician, 35, 54.
                              Cleveland, W.S. and Guarino, R. (1976). Some robust statistical procedures
                                and their application to air pollution data. Technometrics, 18, 401–409.
                              Cochran, R.N. and Horne, F.H., (1977). Statistically weighted principal
                                component analysis of rapid scanning wavelength kinetics experiments.
                                Anal. Chem., 49, 846–853.
                              Cohen, S.J. (1983). Classification of 500 mb height anomalies using
                                obliquely rotated principal components. J. Climate Appl. Meteorol., 22,
                                1975–1988.
                              Cohn, R.D. (1999). Comparisons of multivariate relational structures in
                                serially correlated data. J. Agri. Biol. Environ. Statist., 4, 238–257.
                                                             2
                              Coleman, D. (1985). Hotelling’s T , robust principal components, and
                                graphics for SPC. Paper presented at the 1985 Annual Meeting of the
                                American Statistical Association.
                              Commandeur, J.J.F, Groenen, P.J.F and Meulman, J.J. (1999). A distance-
                                based variety of nonlinear multivariate data analysis, including weights
                                for objects and variables. Psychometrika, 64, 169–186.
                              Compagnucci, R.H., Araneo, D. and Canziani, P.O. (2001). Principal se-
                                quence pattern analysis: A new approach to classifying the evolution of
                                atmospheric systems. Int. J. Climatol., 21, 197–217.
                              Compagnucci, R.H. and Salles, M.A. (1997). Surface pressure patterns
                                during the year over Southern South America. Int. J. Climatol., 17,
                                635–653.
                              Cook, R.D. and Weisberg, S. (1982). Residuals and Influence in Regression.
                                New York: Chapman and Hall.
   454   455   456   457   458   459   460   461   462   463   464