Page 460 - Jolliffe I. Principal Component Analysis
P. 460
425
References
Cook, R.D. (1986). Assessment of local influence. J. R. Statist. Soc. B, 48,
133–169 (including discussion).
Coppi, R. and Bolasco, S. (eds.) (1989). Multiway Data Analysis. Amster-
dam: North-Holland.
Corbitt, B. and Ganesalingam, S. (2001). Comparison of two leading mul-
tivariate techniques in terms of variable selection for linear discriminant
analysis. J. Statist. Manag. Syst., 4, 93–108.
Corsten, L.C.A. and Gabriel, K.R. (1976). Graphical exploration in
comparing variance matrices. Biometrics, 32, 851–863.
Cox, D.R. (1972). The analysis of multivariate binary data. Appl. Statist.,
21, 113–120.
Cox, T.F. and Cox, M.A.A. (2001). Multidimensional Scaling, 2nd edition.
Boca Raton: Chapman and Hall.
Craddock, J.M. (1965). A meteorological application of principal compo-
nent analysis. Statistician, 15, 143–156.
Craddock, J.M. and Flintoff, S. (1970). Eigenvector representations of
Northern Hemispheric fields. Q.J.R. Met. Soc., 96, 124–129.
Craddock, J.M. and Flood, C.R. (1969). Eigenvectors for representing the
500 mb. geopotential surface over the Northern Hemisphere. Q.J.R. Met.
Soc., 95, 576–593.
Craw, I. and Cameron, P. (1992). Face recognition by computer. Proc. Br.
Machine Vision Conf., 489–507. Berlin: Springer-Verlag.
Critchley, F. (1985). Influence in principal components analysis. Biome-
trika, 72, 627–636.
Crone, L.J. and Crosby, D.S. (1995). Statistical applications of a metric on
subspaces to satellite meteorology. Technometrics, 37, 324–328.
Croux, C. and Haesbroeck, G. (2000). Principal component analysis based
on robust estimators of the covariance or correlation matrix: Influence
functions and efficiencies. Biometrika, 87, 603–618.
Croux, C. and Ruiz-Gazen, A. (1995). A fast algorithm for robust principal
components based on projection pursuit. In COMPSTAT 96, ed. A. Prat,
211–216.
Croux, C. and Ruiz-Gazen, A. (2000). High breakdown estimators
for principal components: the projection-pursuit approach revisited.
Preprint 2000/149. Institut de Statistique et de Recherche Op´erationelle,
Universit´e Libre de Bruxelles.
Cuadras, C.M. (1998). Comment on ‘Some cautionary notes on the use of
principal components regression’. Amer. Statistician, 52, 371.
Cubadda, G. (1995). A note on testing for seasonal co-integration using
principal components in the frequency domain. J. Time Series Anal.,
16, 499–508.
Dahl, K.S., Piovoso, M.J. and Kosanovich, K.A. (1999). Translating third-
order data analysis methods to chemical batch processes. Chemometrics
Intell. Lab. Syst., 46, 161–180.

