Page 461 - Jolliffe I. Principal Component Analysis
P. 461

References
                              426
                              Daigle, G. and Rivest, L.-P. (1992). A robust biplot. Canad. J. Statist., 20,
                                241–255.
                              Daling, J.R. and Tamura, H. (1970). Use of orthogonal factors for selection
                                of variables in a regression equation—an illustration. Appl. Statist., 19,
                                260–268.
                              Darnell, A.C. (1994). A Dictionary of Econometrics. Aldershot: Edward
                                Elgar.
                              Darroch, J.N. and Mosimann, J.E. (1985). Canonical and principal
                                components of shape. Biometrika, 72, 241–252.
                              Daudin, J.J., Duby, C. and Tr´ecourt, P. (1988). Stability of principal
                                component analysis studied by the bootstrap method. Statistics, 19,
                                241–258.
                              Daudin, J.J., Duby, C. and Tr´ecourt, P. (1988). PCA stability studied by
                                the bootstrap and the infinitesimal jackknife method. Statistics, 20, 255–
                                270.
                              Daultrey, S. (1976). Principal Components Analysis. Norwich: Geo Ab-
                                stracts.
                              Davenport, M. and Studdert-Kennedy, G. (1972). The statistical analysis
                                of aesthetic judgment: An exploration. Appl. Statist., 21, 324–333.
                              Davies, P.T. and Tso, M.K.-S. (1982). Procedures for reduced-rank
                                regression. Appl. Statist., 31, 244–255.
                              Davison, M.L. (1983). Multidimensional Scaling. New York: Wiley.
                              Dawkins, B. (1990). Reply to Comment on Dawkins (1989) by W.F.
                                Kuhfeld. Amer. Statistician, 44, 58–60.
                              Dear, R.E. (1959). A Principal Components Missing Data Method for Mul-
                                tiple Regression Models. SP-86. Santa Monica: Systems Development
                                Corporation.
                              de Falguerolles, A. (2000). GBMs: GLMs with bilinear terms. In COMP-
                                STAT 2000, eds. J.G. Bethlehem and P.G.M. van der Heijden, 53–64.
                                Heidelberg: Physica-Verlag.
                              de Falguerolles, A. and Jmel, S. (1993). Un crit`ere de choix de variables en
                                analyses en composantes principales fond´e sur des mod`eles graphiques
                                gaussiens particuliers. Canad. J. Statist., 21, 239–256.
                              de Leeuw, J. (1986). Comment on Caussinus. In Multidimensional Data
                                Analysis, eds. J. de Leeuw, W. Heiser, J. Meulman and F. Critchley,
                                171–176. Leiden: DSWO Press.
                              de Leeuw, J. and van Rijckevorsel, J. (1980). Homals and Princals. Some
                                generalizations of principal components analysis. In Data Analysis and
                                Informatics, eds. E. Diday, L. Lebart, J.P. Pag`es and R. Tomassone,
                                231–242. Amsterdam: North-Holland.
                              de Ligny, C.L., Nieuwdorp, G.H.E., Brederode, W.K., Hammers, W.E. and
                                van Houwelingen, J.C. (1981). An application of factor analysis with
                                missing data. Technometrics, 23, 91–95.
                              Dempster, A.P. (1969). Elements of Continuous Multivariate Analysis.
                                Reading, Massachusetts: Addison-Wesley.
   456   457   458   459   460   461   462   463   464   465   466