Page 463 - Jolliffe I. Principal Component Analysis
P. 463
References
428
Dunn, J.E. and Duncan, L. (2000). Partitioning Mahalanobis D
sharpen GIS classification. University of Arkansas Statistical Laboratory
Technical Report No. 29. 2 to
Dunteman, G.H. (1989). Principal Components Analysis. Beverly Hills:
Sage.
Durbin, J. (1984). Time series analysis. Present position and potential
developments: Some personal views. J. R. Statist. Soc. A, 147, 161–173.
Durbin, J. and Knott, M. (1972). Components of Cram´er–von Mises
statistics I. J. R. Statist. Soc. B, 34, 290–307 (correction, 37, 237).
Durbin, J., Knott, M. and Taylor, C.C. (1975). Components of Cram´er–von
Mises statistics II. J. R. Statist. Soc. B, 37, 216–237.
Eastment, H.T. and Krzanowski, W.J. (1982). Cross-validatory choice
of the number of components from a principal component analysis.
Technometrics, 24, 73–77.
Efron, B. and Tibshirani, R.J. (1993). An Introduction to the Bootstrap.
New York: Chapman and Hall.
Eggett, D.L. and Pulsipher, B.A. (1989). Principal components in mul-
tivariate control charts. Paper presented at the American Statistical
Association Annual Meeeting, August 1989, Washington, D.C.
Elmore, K.L. and Richman, M.B. (2001). Euclidean distance as a similarity
metric for principal component analysis. Mon. Weather Rev., 129, 540–
549.
Elsner, J.B. and Tsonis, A.A. (1996). Singular Spectrum Analysis: A New
Tool in Time Series Analyis.NewYork:PlenumPress.
Escoufier, Y. (1986). A propos du choix des variables en analyse des
donn´ees. Metron, 44, 31–47.
Escoufier, Y. (1987). The duality diagram: a means for better practical
application. In Developments in Numerical Ecology, eds. P. Legendre
and L. Legendre, 139-156. Berlin: Springer-Verlag.
Esposito, V. (1998). Deterministic and probabilistic models for symmetrical
and non symmetrical principal component analysis. Metron, 56, 139–
154.
Everitt, B.S. (1978). Graphical Techniques for Multivariate Data. London:
Heinemann Educational Books.
Everitt, B.S. and Dunn, G. (2001). Applied Multivariate Data Analysis,
2nd edition. London: Arnold.
Everitt, B.S., Landau, S. and Leese, M. (2001). Cluster Analysis, 4th
edition. London: Arnold.
Fancourt, C.L. and Principe, J.C. (1998). Competitive principal component
analysis for locally stationary time series. IEEE Trans. Signal Proc., 11,
3068–3081.
Farmer, S.A. (1971). An investigation into the results of principal com-
ponent analysis of data derived from random numbers. Statistician, 20,
63–72.

