Page 463 - Jolliffe I. Principal Component Analysis
P. 463

References
                              428
                              Dunn, J.E. and Duncan, L. (2000). Partitioning Mahalanobis D
                                sharpen GIS classification. University of Arkansas Statistical Laboratory
                                Technical Report No. 29.                                  2  to
                              Dunteman, G.H. (1989). Principal Components Analysis. Beverly Hills:
                                Sage.
                              Durbin, J. (1984). Time series analysis. Present position and potential
                                developments: Some personal views. J. R. Statist. Soc. A, 147, 161–173.
                              Durbin, J. and Knott, M. (1972). Components of Cram´er–von Mises
                                statistics I. J. R. Statist. Soc. B, 34, 290–307 (correction, 37, 237).
                              Durbin, J., Knott, M. and Taylor, C.C. (1975). Components of Cram´er–von
                                Mises statistics II. J. R. Statist. Soc. B, 37, 216–237.
                              Eastment, H.T. and Krzanowski, W.J. (1982). Cross-validatory choice
                                of the number of components from a principal component analysis.
                                Technometrics, 24, 73–77.
                              Efron, B. and Tibshirani, R.J. (1993). An Introduction to the Bootstrap.
                                New York: Chapman and Hall.
                              Eggett, D.L. and Pulsipher, B.A. (1989). Principal components in mul-
                                tivariate control charts. Paper presented at the American Statistical
                                Association Annual Meeeting, August 1989, Washington, D.C.
                              Elmore, K.L. and Richman, M.B. (2001). Euclidean distance as a similarity
                                metric for principal component analysis. Mon. Weather Rev., 129, 540–
                                549.
                              Elsner, J.B. and Tsonis, A.A. (1996). Singular Spectrum Analysis: A New
                                Tool in Time Series Analyis.NewYork:PlenumPress.
                              Escoufier, Y. (1986). A propos du choix des variables en analyse des
                                donn´ees. Metron, 44, 31–47.
                              Escoufier, Y. (1987). The duality diagram: a means for better practical
                                application. In Developments in Numerical Ecology, eds. P. Legendre
                                and L. Legendre, 139-156. Berlin: Springer-Verlag.
                              Esposito, V. (1998). Deterministic and probabilistic models for symmetrical
                                and non symmetrical principal component analysis. Metron, 56, 139–
                                154.
                              Everitt, B.S. (1978). Graphical Techniques for Multivariate Data. London:
                                Heinemann Educational Books.
                              Everitt, B.S. and Dunn, G. (2001). Applied Multivariate Data Analysis,
                                2nd edition. London: Arnold.
                              Everitt, B.S., Landau, S. and Leese, M. (2001). Cluster Analysis, 4th
                                edition. London: Arnold.
                              Fancourt, C.L. and Principe, J.C. (1998). Competitive principal component
                                analysis for locally stationary time series. IEEE Trans. Signal Proc., 11,
                                3068–3081.
                              Farmer, S.A. (1971). An investigation into the results of principal com-
                                ponent analysis of data derived from random numbers. Statistician, 20,
                                63–72.
   458   459   460   461   462   463   464   465   466   467   468