Page 465 - Jolliffe I. Principal Component Analysis
P. 465

References
                              430
                              Fomby, T.B., Hill, R.C. and Johnson, S.R. (1978). An optimal property of
                                principal components in the context of restricted least squares. J. Amer.
                                Statist. Assoc., 73, 191–193.
                              Foster, P. (1998). Exploring multivariate data using directions of high
                                density. Statist. Computing, 8, 347–355.
                              Fowlkes, E.B. and Kettenring, J.R. (1985). Comment on ‘Estimating op-
                                timal transformations for multiple regression and correlation’ by L.
                                Breiman and J.H. Friedman. J. Amer. Statist. Assoc., 80, 607–613.
                              Frane, J.W. (1976). Some simple procedures for handling missing data in
                                multivariate analysis. Psychometrika, 41, 409–415.
                              Frank, I.E. and Friedman, J.H. (1989). Classification: Oldtimers and
                                newcomers. J. Chemometrics, 3, 463–475.
                              Frank, I.E. and Friedman, J.H. (1993). A statistical view of some
                                chemometrics tools. Technometrics, 35, 109–148 (including discussion).
                              Franklin, S.B., Gibson, D.J., Robertson, P.A., Pohlmann, J.T. and Fral-
                                ish, J.S. (1995). Parallel analysis: A method for determining significant
                                principal components. J. Vegetat. Sci., 6, 99–106.
                              Freeman, G.H. (1975). Analysis of interactions in incomplete two-way
                                tables. Appl. Statist., 24, 46–55.
                              Friedman, D.J. and Montgomery, D.C. (1985). Evaluation of the predictive
                                performance of biased regression estimators. J. Forecasting, 4, 153-163.
                              Friedman, J.H. (1987). Exploratory projection pursuit. J. Amer. Statist.
                                Assoc., 82, 249–266.
                              Friedman, J.H. (1989). Regularized discriminant analysis. J. Amer. Statist.
                                Assoc., 84, 165–175.
                              Friedman, J.H. and Tukey, J.W. (1974). A projection pursuit algorithm for
                                exploratory data analysis. IEEE Trans. Computers C, 23, 881–889.
                              Friedman, S. and Weisberg, H.F. (1981). Interpreting the first eigenvalue
                                of a correlation matrix. Educ. Psychol. Meas., 41, 11–21.
                              Frisch, R. (1929). Correlation and scatter in statistical variables. Nordic
                                Statist. J., 8, 36–102.
                              Fujikoshi, Y., Krishnaiah, P.R. and Schmidhammer, J. (1985). Effect of
                                additional variables in principal component analysis, discriminant anal-
                                ysis and canonical correlation analysis. Tech. Report 85-31, Center for
                                Multivariate Analysis, University of Pittsburgh.
                              Gabriel, K.R. (1971). The biplot graphic display of matrices with
                                application to principal component analysis. Biometrika, 58, 453–467.
                              Gabriel, K.R. (1978). Least squares approximation of matrices by additive
                                and multiplicative models. J. R. Statist. Soc. B, 40, 186–196.
                              Gabriel, K.R. (1981). Biplot display of multivariate matrices for inspection
                                of data and diagnosis. In Interpreting Multivariate Data, ed. V. Barnett,
                                147–173. Chichester: Wiley.
                              Gabriel K.R. (1995a). Biplot display of multivariate categorical data,
                                with comments on multiple correspondence analysis. In Recent Advances
   460   461   462   463   464   465   466   467   468   469   470