Page 105 - Applied Statistics with R
P. 105

7.3. DECOMPOSITION OF VARIATION                                   105


                      Sum of Squares Total
                                                          
                                                                
                                                SST = ∑(   − ̄) 2
                                                             
                                                         =1
                      The quantity “Sum of Squares Total,” or SST, represents the total variation
                      of the observed    values. This should be a familiar looking expression. Note
                      that,

                                               1                  1
                                                            2
                                          2
                                            =      ∑(   − ̄) =       SST.
                                                            
                                                         
                                                − 1                − 1
                                                     =1
                      Sum of Squares Regression
                                                           
                                               SSReg = ∑( ̂   − ̄  ) 2
                                                              
                                                          =1
                      The quantity “Sum of Squares Regression,” SSReg, represents the explained
                      variation of the observed    values.


                      Sum of Squares Error

                                                            
                                             SSE = RSS = ∑(   − ̂   ) 2
                                                                    
                                                                
                                                            =1
                      The quantity “Sum of Squares Error,” SSE, represents the unexplained vari-
                      ation of the observed    values. You will often see SSE written as RSS, or
                      “Residual Sum of Squares.”

                      SST    = sum((y - mean(y)) ^ 2)
                      SSReg = sum((y_hat - mean(y)) ^ 2)
                      SSE    = sum((y - y_hat) ^ 2)
                      c(SST = SST, SSReg = SSReg, SSE = SSE)


                      ##       SST    SSReg       SSE
                      ## 32538.98 21185.46 11353.52


                      Note that,

                                                         SSE
                                                     2
                                                       =     .
                                                       
                                                           − 2
   100   101   102   103   104   105   106   107   108   109   110