Page 352 - Applied Statistics with R
P. 352

352                              CHAPTER 14. TRANSFORMATIONS


                                 fit_2 = lm(y ~ poly(x, 2), data = data_higher)
                                 fit_4 = lm(y ~ poly(x, 4), data = data_higher)


                                 plot(y ~ x, data = data_higher, col = "grey", pch = 20, cex = 1.5,
                                      main = "Simulated Quartic Data")
                                 x_plot = seq(-5, 5, by = 0.05)
                                 lines(x_plot, predict(fit_2, newdata = data.frame(x = x_plot)),
                                       col = "dodgerblue", lwd = 2, lty = 1)
                                 lines(x_plot, predict(fit_4, newdata = data.frame(x = x_plot)),
                                       col = "darkorange", lwd = 2, lty = 2)






                                                          Simulated Quartic Data


                                       10


                                       5


                                       0
                                   y
                                       -5


                                       -10


                                           -2           -1           0            1            2
                                                                     x





                                 par(mfrow = c(1, 2))

                                 plot(fitted(fit_2), resid(fit_2), col = "grey", pch = 20,
                                      xlab = "Fitted", ylab = "Residuals", main = "Fitted versus Residuals")
                                 abline(h = 0, col = "darkorange", lwd = 2)

                                 qqnorm(resid(fit_2), main = "Normal Q-Q Plot", col = "darkgrey")
                                 qqline(resid(fit_2), col = "dodgerblue", lwd = 2)
   347   348   349   350   351   352   353   354   355   356   357