Page 203 - Template Tesis UTM v2.0
P. 203
composites,” J. Reinf. Plast. Compos., 2007. 26(10): 959–976.
97. Ude, A. U., Ariffin, A. K., and Azhari, C. H., “Impact behaviour of woven
natural silk composite face-sheet sandwiched foam under low velocity impact,”
Adv. Mater. Res., 2013. 774–776: 1242–1249.
98. Hosur, M. V., Adbullah, M., and Jeelani, S., “Studies on the low-velocity impact
response of woven hybrid composites,” Compos. Struct., 2005. 67(3): 253–262.
99. Budhoo, Y., “Effect of temperature on the damage hybrid thick composites
subject to drop-weight and ballistic impact,”. Ph.D Thesis. The City University
of New York; 2011.
100. Wang, X., Hu, B., and Feng, Y., “Low velocity impact properties of 3D woven
basalt/aramid hybrid composites,” Compos. Sci. Technol., 2008. 68: 444–450.
101. Cantwel, W. J. and Morton, J., “The impact resistance of composite materials -
A review,” Composites, 1991. 22(5): 347–362.
102. Cheon, S. S., Lim, T. S., and Lee, D. G., “Impact energy absorption
characteristics of glass hybrid composites,” 1999. 46: 267–278.
103. Cronin, D. S., Salisbury, C. P., and Horst, C. R., “High rate characterization of
low impedance materials using a polymeric split Hopkinson pressure bar,” Dep.
Mech. Eng. Univ. Waterloo, 2006. 1–9.
104. Kolsky, H., “An investigation of the mechanical properties of materials at very
high rates of loading.,” IOP Sci., 1949. 676–700.
105. Woldesenbet, E. and Vinson, J. R., “Specimen geometry effects on high-strain-
rate testing of graphite/epoxy composites,” AIAA J., 1999. 37: 1102–1106.
106. Dee, A.T., Vinson, J.R. and Sankar, B., “Through-thickness stitching effects on
graphite/epoxy high-strain-rate compressive properties,” AIAA J., 2001. 39(1):
126–133.
107. Kumar and P.Garg, A. and Agarwal, B. D., “Dynamic Compressive Behaviour
of Unidirectional GFRF for Various Fibre Orientations.,” Mater. Lett., 1986.
4(2): 111–116.
108. Shaker, K., Jabbar, A., Karahan, M., Karahan, N., and Nawab, Y., “Study of
dynamic compressive behaviour of aramid and ultrahigh molecular weight
polyethylene composites using Split Hopkinson Pressure Bar,” J. Compos.
Mater., 2016. 1–14.
109. Kim, W., Argento, A., Lee, E., Flanigan, C., Houston, D., “High strain-rate
behavior of natural fiber-reinforced polymer composites.,” J. Compos. Mater.,
169

