Page 203 - Template Tesis UTM v2.0
P. 203

composites,” J. Reinf. Plast. Compos., 2007. 26(10): 959–976.

                   97.  Ude,  A.  U.,  Ariffin,  A.  K.,  and  Azhari,  C.  H., “Impact  behaviour  of  woven
                         natural silk composite face-sheet sandwiched foam under low velocity impact,”

                         Adv. Mater. Res., 2013. 774–776: 1242–1249.
                   98.  Hosur, M. V., Adbullah, M., and Jeelani, S., “Studies on the low-velocity impact

                         response of woven hybrid composites,” Compos. Struct., 2005. 67(3): 253–262.
                   99.  Budhoo,  Y.,  “Effect  of  temperature  on  the  damage  hybrid  thick  composites

                         subject to drop-weight and ballistic impact,”. Ph.D Thesis. The City University

                         of New York; 2011.
                   100.  Wang, X., Hu, B., and Feng, Y., “Low velocity impact properties of 3D woven

                         basalt/aramid hybrid composites,” Compos. Sci. Technol., 2008. 68: 444–450.
                   101.  Cantwel, W. J. and Morton, J., “The impact resistance of composite materials -

                         A review,” Composites, 1991. 22(5): 347–362.
                   102.  Cheon,  S.  S.,  Lim,  T.  S.,  and  Lee,  D.  G.,  “Impact  energy  absorption

                         characteristics of glass hybrid composites,” 1999. 46: 267–278.

                   103.  Cronin, D. S., Salisbury, C. P., and Horst, C. R., “High rate characterization of
                         low impedance materials using a polymeric split Hopkinson pressure bar,” Dep.

                         Mech. Eng. Univ. Waterloo, 2006. 1–9.

                   104.  Kolsky, H., “An investigation of the mechanical properties of materials at very
                         high rates of loading.,” IOP Sci., 1949. 676–700.

                   105.  Woldesenbet, E. and Vinson, J. R., “Specimen geometry effects on high-strain-
                         rate testing of graphite/epoxy composites,” AIAA J., 1999. 37: 1102–1106.

                   106.  Dee, A.T., Vinson, J.R. and Sankar, B., “Through-thickness stitching effects on
                         graphite/epoxy high-strain-rate compressive properties,” AIAA J., 2001. 39(1):

                         126–133.

                   107.  Kumar and P.Garg, A. and Agarwal, B. D., “Dynamic Compressive Behaviour
                         of Unidirectional GFRF for Various Fibre Orientations.,” Mater. Lett., 1986.

                         4(2): 111–116.
                   108.  Shaker, K., Jabbar, A., Karahan, M., Karahan, N., and Nawab, Y., “Study of

                         dynamic  compressive  behaviour  of  aramid  and  ultrahigh  molecular  weight
                         polyethylene  composites  using  Split  Hopkinson  Pressure  Bar,”  J.  Compos.

                         Mater., 2016. 1–14.

                   109.  Kim,  W.,  Argento,  A.,  Lee,  E.,  Flanigan,  C.,  Houston,  D.,  “High  strain-rate
                         behavior of natural fiber-reinforced polymer composites.,” J. Compos. Mater.,

                                                           169
   198   199   200   201   202   203   204   205   206   207   208