Page 16 - Modul A+1 Matematik Tambahan Tingkatan 4
P. 16

SPM
                                                  Soalan Berformat            SPM


                                                           Kertas 1  Paper 1                                             BAB 1

                                                           Bahagian A/Section A
                   1.  (a)  Rajah di bawah menunjukkan fungsi gubahan  hk    2.  (a)  Diberi fungsi k : x → 2x + 9, cari
                         yang memetakan p kepada r.                         Given the function k : x → 2x + 9, find   KBAT  Mengaplikasi
                  KLON                                                KLON
                  SPM M  The diagram below shows the  composite  function  hk   SPM M  (i)  nilai x apabila k(x) = 3x,
                                                                      SP
                  SP
                         which maps p to r.   KBAT  Mengaplikasi                the value of x when k(x) = 3x,
                                           hk                               (ii)  nilai a dengan keadaan k(a + 9) = a.
                                                                                the value of a such that k(a + 9) = a
                      ©PAN ASIA PUBLICATIONS
                                                                                                         [4 markah/marks]
                                                                                               x – m
                                                                        (b)  Diberi bahawa q(x) =   n   ialah fungsi songsang
                                                                            bagi fungsi k(x) = 2x + 9. Tentukan nilai bagi 2m – n.
                                                                                           x – m
                               p            q           r                   Given  that  q(x) =   n   is the  inverse  function  of  the
                                                                            function k(x) = 2x + 9. Determine the value of 2m – n.
                         Nyatakan
                         State                                                                           [2 markah/marks]
                         (i)  fungsi yang memetakan q kepada r.
                             the function that maps q to r.             (a)  (i)  2x + 9 = 3x
                         (ii)  k  h (r)                                            –x = –9
                               –1 –1
                                                     [2 markah/marks]               x = 9
                     (b)  Diberi fungsi f (x) = 2mx dan g(x) = 3x + n, dengan
                         keadaan m dan n ialah pemalar. Ungkapkan n dalam   (ii)   2(a + 9) + 9 = a
                         sebutan m supaya fungsi gubahan gf memetakan 2            2a + 27 = a
                         kepada dirinya sendiri.                                         a = –27
                         Given the functions f(x) = 2mx and g(x) = 3x + n, where m   (b)  k : x ˜ 2x + 9
                         and n are constants. Express n in terms of m such that the        2x + 9  = y
                         composite function gf maps 2 to itself.                  x  =   y – 9
                                                                                       2
                                                   KBAT  Mengaplikasi          –1     x – 9
                                                     [3 markah/marks]         k (x)  =   2
                                                                            Jadi, m = 9 dan n = 2.
                     (a)  (i)  h                                             2m – n = 2(9) – 2
                         (ii)  p                                                  = 16
                     (b)        gf (2) = 2
                          3(2m(2)) + n = 2
                             12m + n = 2
                                   n = 2 – 12m

                   3.  (a)  Diberi f : x → 1 – 2mx, g : x → 5x – n dan fg : x → m x + n. Cari nilai-nilai m dan n.
                                                                    2
                                                                2
                  KLON   Given f : x → 1 – 2mx, g : x → 5x – n and fg : x → m x + n. Find the values of m and n.  KBAT  Mengaplikasi
                  SPM M                                                                                  [4 markah/marks]
                  SP
                     (b)  Seterusnya, dengan menggunakan nilai m yang negatif, ungkapkan gf(x) menggunakan tatatanda fungsi.
                         Hence, by using the negative value of m, express gf(x) by using function notation.   [2 markah/marks]
                     (a)  fg(x) = 1 – 2m(5x – n)                      (b)  m = –10 Ú n =  1
                              = 1 – 10mx + 2mn                                         21
                         m x + n = –10mx + 2mn + 1                         f(x) = 1 – 2(–10)x
                           2
                         Bandingkan pekali x:                                  = 1 + 20x
                               m  = –10m                                            1
                                2
                          m  + 10m = 0                                     g(x) = 5x –  21
                           2
                                m = 0 atau m = –10                        gf(x) = 5(1 + 20x) –   1
                         Bandingkan pemalar:                                              21
                                                                                          1
                         n = 2mn + 1                                           = 5 + 100x –  21
                         Jika m = 0 ⇒ n = 1                                           104
                         Jika m = –10 ⇒ n = 2(–10)n + 1                        = 100x +   21
                                       n = –20n + 1
                                     21n = 1
                                       n =   1
                                          21

                                                                  13




         01_Modul A+ MateTam Tg4.indd   13                                                                       08/10/2021   11:18 AM
   11   12   13   14   15   16   17   18   19   20   21