Page 11 - Modul A+1 Matematik Tambahan Tingkatan 4
P. 11

5
                3.  Diberi f (x) =  , cari setiap yang berikut.
                             x
                            5
                  Given f (x) =  , find each of the following.  TP 3
           BAB 1   Contoh/Example                   (a)  f (x)                      (b)  f (x)
                            x
                                                          5
                                                                                           3
                    f (x)
                      2
                                                                                                 5
                                                                        5
                                 5
                                        5
                                                                 2    2    1
                                                                                           3
                                                           5
                            5
                                                                                                 x
                                                                                                      x
                                                                        x
                                                                             x
                    f (x) = f     =     = 5 ÷       f (x) = f f f  = f   4    =  5  f (x) = f   2    =  5
                      2
                            x
                                 5
                                        x
                             x
                        = 5 ×   = x x
                             5
                       ©PAN ASIA PUBLICATIONS
                   (c)  f (x)                       (d)  f (x)                      (e)  f (x)
                          4
                                                          8
                                                                                           13
                                                                                                            5
                        f (x) = f f  = f (x) = x        f (x) = f f  = f (x) = x         f (x) = f f f f  = f   12    =  5 x
                                                                 4    4
                                                           8
                                                                                                  4    4    4    1
                                                                                           13
                                                                      4
                                2    2
                          4
                                      2
                                                                                                            x
                4.  Seorang penjaja sate memperoleh keuntungan harian, dalam RM, mengikut fungsi f : x →  2x – 100  dengan x ialah bilangan
                                                                                             4
                  sate yang dijual setiap hari.
                  A satay hawker earns a daily profit, in RM, according to the function f : x →  2x – 100 , where x is the number of satay sold per day.
                                                                           4
                                                                                                               TP 4

                    (a)  Pada satu minggu, penjaja sate tersebut menjual  (b)  Berapakah bilangan minimum sate yang perlu dijual
                       3 580 sate dalam  5 hari. Kira purata keuntungan   supaya penjaja sate itu tidak rugi?
                       harian bagi minggu itu.                          What is the minimum number of satay that needs to be sold
                       In a week, the satay hawker sold 3 580 satay in 5 days.   so that the satay hawker does not suffer loss?
                       Calculate the average daily profit for the week.  2x – 100
                                                                            4     0
                       3 580 ÷ 5 = 716                                        2x  100
                                                                               x  50
                       Purata keuntungan harian
                       =  2(716) – 100                                   Bilangan minimum sate yang perlu dijual ialah
                              4
                                                                        50 cucuk supaya dia tidak rugi.
                       = RM333
                     Uji Kendiri       1.2
                 1.  Tuliskan fungsi berulang f  , f  , f  , f   dan f   bagi    2.  Luas permukaan riak air di permukaan kolam, L, dalam
                                                4
                                             3
                                                          50
                                                   25
                                          2
                              4
                                                                                               2
                                                                       2
                   fungsi f (x) =  , x ≠ 0.                          cm , diberi oleh fungsi L( j) = πj  dengan j ialah jejari
                              x                                      riak air, dalam cm. Jejari riak air bertambah mengikut
                   Write the iterated function f  , f  , f  , f   and f   for the   1
                                            3
                                         2
                                               4
                                                        50
                                                 25
                                                                                  2
                              4                                      fungsi  j(t) =  t ,  t > 0, dengan  t ialah  masa,  dalam
                                                                                4
                   function f (x) =  , x ≠ 0.  KBAT  Mengaplikasi
                              x                                      saat. Cari luas permukaan riak air di permukaan kolam
                    f  (x) = f f (x) =   4   = x                     selepas 4 saat.                          2
                     2
                                                                     The surface area of water ripple on a pool, L, in  cm , is
                                 4
                                                                   given by the function L( j) = πj , where j is the radius of the
                                                                                            2
                                 x
                    f  (x) = f  f (x) =  4                           water ripple, in cm. The radius of the water ripple increases
                     3
                           2
                                                                                            1
                                 x                                   according to the function j(t) =  t , t > 0, where t is the time,
                                                                                              2
                                                                                            4
                    f  (x) = f  f   (x) = x                          in seconds. Find the surface area of water ripple on the pool
                           2  2
                     4
                    f  (x) =  4                                      after 4 seconds.
                     25
                          x
                    f  (x) = x                                               1  2  1
                     50
                                                                              t  =
                                                                     Lj(t) = π    16 πt 4
                                                                               2
                                                                             4
                                                                     Lj(4) =   1 π(4)  = 16π cm 2
                                                                                4
                                                                           16
                                                                8
         01_Modul A+ MateTam Tg4.indd   8                                                                        08/10/2021   11:18 AM
   6   7   8   9   10   11   12   13   14   15   16