Page 14 - Modul A+1 Matematik Tambahan Tingkatan 4
P. 14

(a)  Lakarkan graf bagi f : x → x  untuk domain 0  x  4. Pada satah yang sama, lakarkan graf bagi f  (x). Seterusnya,
                                                2
                                                                                                        –1
                          nyatakan domain dan julat bagi f  (x).
                                                     –1
                          Sketch the graph of f : x → x  for the domain 0  x  4. On the same plane, sketch the graph of f  (x). Hence, state the domain
                                              2
                                                                                                –1
                          and range of f  (x).                                                                           BAB 1
                                     –1
                                                                 f(x)
                                                                16
                                                                15
                                                                14
                                                                13
                                                                12
                                                                11
                                                                          f(x) = x 2
                       ©PAN ASIA PUBLICATIONS
                                                                10
                                                                9
                                                                8
                                                                7
                                                                6
                                                                5
                                                                4
                                                                3            —
                                                                        f (x) = √ x
                                                                         –1
                                                                2
                                                                1
                                                                               x
                                                                 0  1  2  3  4
                                                                –1
                          Domain bagi f  (x) ialah 0  x  4 dan julat bagi f  (x) ialah 0  f   (x)  2.
                                                                                –1
                                      –1
                                                                   –1
                                                                 6x                                             3 – 2x
                      (b)  Fungsi songsang f  (x) ditakrifkan oleh f   : x →  5 + x ,  (c)  Suatu fungsi  f ditakrifkan  sebagai  f :  x  →   5x  ,

                                                          –1
                                        –1
                          x ≠ a.                                           x ≠ 0, cari
                          The inverse function f  (x) is defined by f   : x →   6x  ,             3 – 2x
                                                          –1
                                           –1
                          x ≠ a.                                5 + x      A function f is defined as f : x →   5x  , x ≠ 0, find
                          (i)  Nyatakan nilai a.                           (i)  f  (2),
                                                                                –1
                              State the value of a.                        (ii)  nilai-nilai x dengan keadaan f (x) = f  (x).
                                                                                                            –1
                          (ii)  Cari f (3).                                    the values of x such that f (x) = f  (x).
                                                                                                      –1
                              Find f (3).
                          (iii)  Cari nilai ff  (x).                       (i)  f  (2) ⇒ f(x) = 2
                                       –1
                                                                                –1
                              Find the value of ff  (x).                        3 – 2x
                                            –1
                                                                                  5x   = 2
                          (i)   5 + x ≠ 0                                        3 – 2x = 10x
                                 x ≠ –5                                             3 = 12x
                              ∴ a  = –5                                                1
                          (ii)  f (3) = x ⇒ f  (x) = 3                              x =  4
                                        –1
                                                                                 –1
                                 6x   = 3                                        f (2) =  1
                               5 + x                                                   4
                                 6x = 15 + 3x                              (ii)  Katakan  3 – 2x  = y
                                 3x = 15                                               5x
                                  x = 5                                           3 – 2x = 5xy
                              ∴  f (3) = 5                                       –2x – 5xy = –3
                          (iii)  Katakan   6x   = y        6x                    2x + 5xy = 3
                                       5 + x            5                      x(2 + 5y) = 3
                              6x = 5y + xy       ff  (x) =   5 + x                    x =   3
                                                  –1
                                                            6x
                              6x – xy = 5y              6 –  5 + x                       2 + 5y
                              x(6 – y) = 5y                  30x               Maka, f  (x) =   3
                                                                                     –1
                              x =   5y                =     5 + x                        2 + 5x
                                                                                                       –1
                                 6 – y                  6(5 + x)  –   6x                         f (x) = f  (x)
                              f (x) =   5x               5 + x  5 + x                          3 – 2x  =   3
                                   6 – x                30x    30                                5x   2 + 5x
                                                      =  5 + x  ÷  5 + x                (3 – 2x)(2 + 5x) = 15x
                                                      = x                        6 + 15x – 4x – 10x  – 15x = 0
                                                                                               2
                                                                                         –10x  – 4x + 6 = 0
                                                                                             2
                                                                                                   x = –1 atau x = 0.6
                                                                  11



         01_Modul A+ MateTam Tg4.indd   11                                                                       08/10/2021   11:18 AM
   9   10   11   12   13   14   15   16   17   18   19