Page 15 - Modul A+1 Matematik Tambahan Tingkatan 4
P. 15

x                                         2x + 4                  2
                    (d)  Diberi  fungsi  s(x)  =  ,  x  ≠  0.  Cari  nilai  x  dengan  (e)  Diberi g(x) =   x – 3  , x ≠ 3. Cari nilai bagi   g (–6).
                                                                                                             –1
                                                                                                           7
                                         4
           BAB 1       keadaan s(x) = s (x). Seterusnya, lakarkan graf bagi   Given g(x) =  2x + 4 , x ≠ 3. Find the value of    g (–6).
                                                                                                         2
                                     –1
                                                                                                            –1
                                                                                   x – 3
                                                                                                         7
                       s(x) dan s (x).
                               –1
                                          x
                       Given the function s(x) =  , x ≠ 0. Find the value of x such
                                          4
                       that s(x) = s (x). Hence, sketch the graph of s(x) and s (x).  Katakan   2x + 4  = y
                                                              –1
                                –1
                                                                                  x – 3
                                                                           2x + 4 = xy – 3y
                                               s(x)
                               x
                       Katakan   = y          16                          2x – xy = –3y – 4
                               4
                                                                         x(2 – y) = –3y – 4
                           x  = 4y            15       s (x) = 4x                –3y – 4
                                                       –1
                                              14
                        s (x)  = 4x           13                              x =   2 – y
                         –1
                         s(x)  = s (x)        12                          –1   –3x – 4
                               –1
                                              11
                           x   = 4x           10 9                       g (x) =   2 – x
                           4
                                                                                           7
                                                                          –1
                           x  = 16x            8 7                       g (–6) =  –3(–6) – 4  =
                                                                                 2 – (–6)
                                                                                           4
                           0  = 16x – x        6                         2         2  7   1
                                                                            –1
                           0  = 15x            5 4                       7  g (–6) =   ×   =
                                                                                          2
                                                                                      4
                                                                                   7
                           x  = 0              3      x
                                               2  s(x) = —
                                               1      4
                                                         x
                                               0
                                              –1  1 2 3 4
                     Uji Kendiri       1.3
                                         2 + x                     2.  Diberi fungsi g(x) = 5x – a dan g (x) = bx + 2. Cari nilai
                                                                                              –1
                                   –1
                 1.  Cari fungsi f bagi f  (x) =   . Seterusnya, cari nilai
                                          x                          a dan nilai b.
                   m apabila f (m) = 3.                              Given the functions g(x) = 5x – a and g (x) = bx + 2. Find the
                                                                                                 –1
                   Find the function of f for f  (x) =  2 + x . Hence, find the value   values of a and b.
                                      –1
                                             x
                   of m when f (m) = 3.                              Katakan 5x – a = y
                                                                      5x = y + a
                          2 + x                 2
                   Katakan     = y                  = 3                   y + a
                                                                       x =
                            x a ©PAN ASIA PUBLICATIONS
                                              m – 1
                                                                           5
                     2 + x = xy                   2 = 3m – 3                x   a
                                                                      –1
                     x – xy = –2                3m = 2 + 3           g (x) =   +   …
                                                                                5
                                                                            5
                    x(1– y) = –2                  m =  5             Bandingkan  dengan g (x) = bx + 2:
                                                                                         –1
                        x =   –2                      3               b =  1
                           1 – y                                         5
                                                                     a
                        x =   2                                         = 2
                           y – 1                                     5
                      f (x) =   2                                     a = 10
                           x – 1
                                                          x + 1
                                                                            –1
                                                                                            –1
                 3.  Diberi dua fungsi m : x → ax + b dan n : x →  x – 2 , x ≠ 2. Diberi m (11) = n(3) dan mn (4) = 9, cari nilai a dan
                   nilai b.
                   Given two functions m : x → ax + b and n : x →  x + 1 , x ≠ 2. Given m (11) = n(3) and mn (4) = 9, find the values of a and b.
                                                                                    –1
                                                                     –1
                                                      x – 2
                                                                                                  KBAT  Menganalisis
                    Katakan  ax + b = y          Katakan   x + 1  = y           – :
                                                          x – 2
                               ax = y – b            x + 1 = xy – 2y                  a = 2
                               ax =  y – b           x – xy = –2y – 1            4(2) + b = 11
                                    a                                                 b = 11 – 8
                            x – b                  x(1 – y) = –2y – 1
                      m (x) =                              –2y – 1                    b = 3
                      –1
                                                        x =
                                                            1 – y
                     m (11) = n(3)                         –2x – 1
                     –1
                                                      –1
                       11 – b  =  3 + 1              n (x) =   1 – x
                       a    3 – 2                          –2(4) – 1
                                                      –1
                       11 – b  = 4                   n (4) =   1 – 4
                       a
                                                          = 3
                      11 – b = 4a                    m(3) = 9
                      4a + b = 11 …
                                                    3a + b = 9 …
                                                                12
         01_Modul A+ MateTam Tg4.indd   12                                                                       08/10/2021   11:18 AM
   10   11   12   13   14   15   16   17   18   19   20