Page 15 - Modul A+1 Matematik Tambahan Tingkatan 4
P. 15
x 2x + 4 2
(d) Diberi fungsi s(x) = , x ≠ 0. Cari nilai x dengan (e) Diberi g(x) = x – 3 , x ≠ 3. Cari nilai bagi g (–6).
–1
7
4
BAB 1 keadaan s(x) = s (x). Seterusnya, lakarkan graf bagi Given g(x) = 2x + 4 , x ≠ 3. Find the value of g (–6).
2
–1
–1
x – 3
7
s(x) dan s (x).
–1
x
Given the function s(x) = , x ≠ 0. Find the value of x such
4
that s(x) = s (x). Hence, sketch the graph of s(x) and s (x). Katakan 2x + 4 = y
–1
–1
x – 3
2x + 4 = xy – 3y
s(x)
x
Katakan = y 16 2x – xy = –3y – 4
4
x(2 – y) = –3y – 4
x = 4y 15 s (x) = 4x –3y – 4
–1
14
s (x) = 4x 13 x = 2 – y
–1
s(x) = s (x) 12 –1 –3x – 4
–1
11
x = 4x 10 9 g (x) = 2 – x
4
7
–1
x = 16x 8 7 g (–6) = –3(–6) – 4 =
2 – (–6)
4
0 = 16x – x 6 2 2 7 1
–1
0 = 15x 5 4 7 g (–6) = × =
2
4
7
x = 0 3 x
2 s(x) = —
1 4
x
0
–1 1 2 3 4
Uji Kendiri 1.3
2 + x 2. Diberi fungsi g(x) = 5x – a dan g (x) = bx + 2. Cari nilai
–1
–1
1. Cari fungsi f bagi f (x) = . Seterusnya, cari nilai
x a dan nilai b.
m apabila f (m) = 3. Given the functions g(x) = 5x – a and g (x) = bx + 2. Find the
–1
Find the function of f for f (x) = 2 + x . Hence, find the value values of a and b.
–1
x
of m when f (m) = 3. Katakan 5x – a = y
5x = y + a
2 + x 2
Katakan = y = 3 y + a
x =
x a ©PAN ASIA PUBLICATIONS
m – 1
5
2 + x = xy 2 = 3m – 3 x a
–1
x – xy = –2 3m = 2 + 3 g (x) = + …
5
5
x(1– y) = –2 m = 5 Bandingkan dengan g (x) = bx + 2:
–1
x = –2 3 b = 1
1 – y 5
a
x = 2 = 2
y – 1 5
f (x) = 2 a = 10
x – 1
x + 1
–1
–1
3. Diberi dua fungsi m : x → ax + b dan n : x → x – 2 , x ≠ 2. Diberi m (11) = n(3) dan mn (4) = 9, cari nilai a dan
nilai b.
Given two functions m : x → ax + b and n : x → x + 1 , x ≠ 2. Given m (11) = n(3) and mn (4) = 9, find the values of a and b.
–1
–1
x – 2
KBAT Menganalisis
Katakan ax + b = y Katakan x + 1 = y – :
x – 2
ax = y – b x + 1 = xy – 2y a = 2
ax = y – b x – xy = –2y – 1 4(2) + b = 11
a b = 11 – 8
x – b x(1 – y) = –2y – 1
m (x) = –2y – 1 b = 3
–1
x =
1 – y
m (11) = n(3) –2x – 1
–1
–1
11 – b = 3 + 1 n (x) = 1 – x
a 3 – 2 –2(4) – 1
–1
11 – b = 4 n (4) = 1 – 4
a
= 3
11 – b = 4a m(3) = 9
4a + b = 11 …
3a + b = 9 …
12
01_Modul A+ MateTam Tg4.indd 12 08/10/2021 11:18 AM

