Page 7 - Modul A+1 Matematik Tambahan Tingkatan 4
P. 7

6.  Selesaikan setiap yang berikut.
                  Solve each of the following.  TP 3
           BAB 1   Contoh/Example                                   (a)  Fungsi f ditakrifkan oleh f (x) = |9m + 2x|.

                                                                        Cari nilai-nilai m dengan keadaan
                    Fungsi h ditakrifkan oleh h : x → 4x  – 12.         Function f is defined by f (x) = |9m + 2x|.
                                                 2
                    Function h is defined by h : x → 4x  – 12.          Find the values of m such that
                                             2
                    (i)  Cari imej bagi –1.                              (i)  f (3) = 7
                        Find the image of –1.                            (ii)  f (m) = 2
                                                                         (iii)  f (m) = m + 5
                    (ii)  Diberi imej bagi p ialah p + 2, cari nilai-nilai yang
                        mungkin bagi p.                                  (i)  |9m + 2(3)| = 7
                        Given the image of p is p + 2, find the possible values   9m + 6 = 7   atau    9m + 6 = –7
                        of p.                                                      9m = 1               9m = –13
                       ©PAN ASIA PUBLICATIONS
                                                                                   9m =  1           9   m = –  13
                                                                                        9
                                                                                                               9
                    (i)  h(–1) = 4(–1)  – 12 = –8                        (ii)  |9m + 2m| = 2
                                  2
                                                                                 11m = 2      atau   11m = –2
                    (ii)        h(p) = p + 2                                           2                    2
                             4p  – 12 = p + 2                                    11m =  11           11m = –  11
                               2
                          4p  – p – 14 = 0                               (iii)  |9m + 2m| = m + 5
                            2
                                   p = 2 atau/or p = –1.75                       11m = m + 5   atau    11m = –m – 5
                                                                               11m – m = 5          11m + m = –5
                                                                                 10m = 5               12m = –5
                                                                             1    1m =  1                m = –  5
                                                                                       2                      12
                   (b)  Diberi fungsi f (x) = |x + 8|, cari         (c)  Diberi fungsi f (x) = |1 + 2x|. Nyatakan
                       Given the function f (x) = |x + 8|, find         Given the function f (x) = |1 + 2x|. State
                        (i)  f (–10),                                    (i)  objek-objek bagi 15,
                        (ii)  nilai-nilai x dengan keadaan f (x) = 5.        the objects of 15,
                            the values of x such that f (x) = 5.         (ii)  domain bagi 0  f (x)  15.
                                                                             the domain for 0  f (x)  15.
                        (i)  |–10 + 8| = |–2| = 2
                        (ii)  |x + 8| = 5                                (i)   |1 + 2x| = 15
                             x + 8 = 5   atau   x + 8 = –5                    1 + 2x  = –15   atau   1 + 2x = 15
                                x = –3           x = –13                          x  = –8            x = 7
                                                                         (ii)  –8  x  7

                   (d)  Rajah di bawah menunjukkan gambar rajah anak   (e)  Diberi satu fungsi f : x →   6  , x ≠ m.
                       panah yang mewakili  fungsi  h(x) =  s –  tx, dengan                  1 – 2x
                       keadaan s dan t ialah pemalar. Cari nilai s dan nilai t.  Given a function f : x →   6  , x ≠ m.
                       The diagram below  shows an arrow diagram which   (i)  Nyatakan nilai m. 1 – 2x
                       represents the function  h(x) =  s –  tx,  where s and t are   State the value of m.
                       constants. Find the values of s and t.           (ii)  Cari nilai-nilai k dengan keadaan f (k) = –k.
                                                                            Find the values of k such that f (k) = –k.
                                           h
                                                                                         1          1
                                                                        (i)  Oleh sebab x ≠  , maka m =
                                                    –13                                  2          2
                                   5                                          6
                                                                        (ii)      = –k
                                                    –16                     1 – 2k

                                                                                6 = –k(1 – 2k)
                                   6                                            6 = –k + 2k 2
                                                                                0 = 2k  – k – 6
                                                                                     2
                                                                                k = –1.5 atau k = 2
                       s – t(5) = –13
                         s – 5t = –13 …
                         s – t(6) = –16
                         s – 6t = –16 …
                       Persamaan serentak
                        – :
                       –t = –3
                       –t = 3
                       s – 5(3) = –13
                            s = –13 + 15
                            s = 2


                                                                4




         01_Modul A+ MateTam Tg4.indd   4                                                                        08/10/2021   11:18 AM
   2   3   4   5   6   7   8   9   10   11   12