Page 9 - Modul A+1 Matematik Tambahan Tingkatan 4
P. 9

1.2       Fungsi Gubahan                                                              m.s. 12-19
                                                                                                          Buku Teks
                              Composite Functions
           BAB 1    1.  Selesaikan setiap yang berikut.

                  Solve each of the following.   TP 3

                   Contoh/Example                                   (a)  Fungsi f dan fungsi g masing-masing ditakrifkan oleh
                                                                        f : x → 2x  – 5 dan g : x → –11 + 8x. Cari ungkapan
                                                                                2
                    Dalam gambar rajah anak panah di bawah, fungsi  f   bagi fg dan gf. Seterusnya, cari nilai-nilai x apabila
                    memetakan  set  M kepada set  N manakala  fungsi  g   Functions  f  and  g  are  defined  by  f :  x → 2x  – 5  and
                                                                                                           2
                    memetakan set N kepada set P.                       g : x → –11 + 8x respectively. Find the expression of fg and
                    In the arrow diagram below, function f maps set M to set N   gf. Hence, find the values of x when
                    whereas function g maps set N to set P.             (i)  f = g
                                                                        (ii)  fg = 3gf + 6
                                     f        g
                                 x      x + 2     3x 2
                                                                        fg(x) = f(–11 + 8x) = 2(–11 + 8x)  – 5
                                                                                                  2
                                                                        gf (x) = g(2x  – 5) = –11 + 8(2x  – 5) = 16x  – 51
                                                                                                          2
                                                                                                 2
                                                                                  2
                                Set M   Set N    Set P
                                                                                  2
                    Dengan menggunakan tatatanda fungsi, nyatakan       (i)     2x  – 5 = –11 + 8x
                                                                              2
                    By usingn the function notation, state                  2x  – 8x + 6 = 0
                    (i)  fungsi f,          (ii)  fungsi g,                          x = 3 atau x = 1
                        the function f,         the function g,
                                                                                                2
                                                                                     2
                    (iii)  fungsi f ,       (iv)  fungsi gf  .          (ii)  2(–11 + 8x)  – 5 = 3(16x  – 51) + 6
                                                        2
                              2
                                                                                 2
                                                                                                      2
                        the function f ,        the function gf  .          2(64x  – 176x + 121) – 5 – 3(16x )
                                                           2
                                  2
                                                                            + 3(51) – 6 = 0
                                                                            128x  – 352x + 242 – 5 – 48x  + 153 – 6 = 0
                                                                                                   2
                                                                                2
                    (i)  f (x) = x + 2                                      80x  – 352x + 384 = 0
                                                                               2
                    (ii)     gf (x) = 3x 2                                  x = 2.4 atau x = 2
                        g(x + 2) = 3x 2
                        Katakan/Let  x + 2 = y
                                     x = y – 2
                                   g(y) = 3(y – 2) 2
                       ©PAN ASIA PUBLICATIONS
                        ∴ g(x) = 3(x – 2)
                                      2
                    (iii)  f (x) = f (x + 2) = (x + 2) + 2 = x + 4
                          2
                    (iv)  gf (x) = g(x + 4)  = 3(x + 4 – 2)
                           2
                                                 2
                                      = 3(x + 2) 2
                   (b)  Diberi h : x → px + q dan h  : x → 9x + 8.  (c)  Diberi  f (x) = 3m – 7x dan  g(x) = 2n + 3x dengan
                                             2
                       Cari nilai bagi p + 2q jika p > 0.               keadaan f  = gf. Ungkapkan x dalam sebutan m dan n.
                                                                                 2
                       Given h : x → px + q and h  : x → 9x + 8.        Given f (x) = 3m – 7x and g(x) = 2n + 3x such that f  = gf.
                                                                                                               2
                                           2
                       Find the value of p + 2q if p > 0.               Express x in terms of m and n.
                       hh(x) = p(px + q) + q
                       hh(x) = p x + pq + q                             ff (x)  = 3m – 7(3m – 7x)
                               2
                                                                            = 3m – 21m + 49x
                       Bandingkan dengan h (x) =  9x  + 8                   = –18m + 49x
                                                2
                                         2
                       p  = 9                                           gf (x) = 2n + 3(3m – 7x)
                        2
                       2 p = 3 (sebab p > 0)                                = 2n + 9m – 21x
                       3q + q = 8                                        –18m + 49x = 2n + 9m – 21x
                           4q = 8                                         49x + 21x = 2n + 9m + 18m
                            q = 2                                              70x = 2n + 27m
                                                                                 x =  2n + 27m
                       p + 2q = 3 + 2(2) = 7                                           70






                                                                6




         01_Modul A+ MateTam Tg4.indd   6                                                                        08/10/2021   11:18 AM
   4   5   6   7   8   9   10   11   12   13   14