Page 121 - Elementary Algebra Exercise Book I
P. 121

ELEMENTARY ALGEBRA EXERCISE BOOK I                                             inequAlities





                 5
                                                                     1
                                    1
                      2
                                             1
                                                             1
                                                         5
               x +   3 3 2  2  2  5 5  3 3 1  2  2  3 3 1  2 2  3  3 x · 5  3 3 1  2  3 3 1  2  2    3  3
                                                                     √ x = x .
                                             √ x ≥ 3
                                    √ x +
                      √ x = x +
                  5
                                                             √ x · 2
                       √ x = x +
                                                                      √ x = x
                                              √ x ≥ 3
                                     √ x +
                 x +
                                                         x ·
                                                              √ x ·
                                                                     3 3
                                                              3 3
                                    3 3
                      3 3
                                             3 3
                                                                2
                                               2
                                          5
                                                        3
                                                   2
                                                                         3
                                                                    2
                                                           5
               Similarly, we can obtain  y +   √ y ≥ y ,z +     √ z ≥ z .
                                              3 3              3 3
                                                                         2
                                                                              2
                                                                    5
                                                               5
                                                                                                   3
                                                                                                        3
                                                                                        2
                                                                                   2
                                                          5
                                                                                              3
               Add these three inequalities up to obtain  x + y + z +    √ (x + y + z ) ≥ x + y + z .
                                                                        3 3
                                 2
                                                                         3
                                                                    3
                                                   5
                                                        5
                                                                              3
                                              5
                                                              2
                       2
                            2
               Since  x + y + z =1, then  x + y + z +        √ ≥ x + y + z ,
                                                            3 3
                      3      2     3      2     3      2      √   (i).
                                                              2
               then  x (1 − x )+ y (1 − y )+ z (1 − z ) ≤
                                                             3 3
                                                               y
                        2

                                           3
                 3
                                                                      z
                                                  2
                                     2
                              3
                                                                                 3
                                                                                         2
                                                                  y
                                                                                               x
                                  3
               [x (1 − x )+ y (1 − y )+ z (1 − z )]( 2  x  2 +  1−y + 2 +  1−z + 2 ) ≥ (   x (1 − x )   2 1−x 2 + 2 +
                     3
                                                                          z
                                               3
                                                           x
                                         2
                            2
                                                                                                  x
                                                                                     3
                                                                           2 ) ≥ (
                   [x (1 − x )+ y (1 − y )+ z (1 − z
                                                      1−x )](
                                                                                    x (1 − x )
                                                          1−x 2  1−y 2  1−z                      1−x

                             y
                                                          2
                                                                    2
                                                               2
               3
              y (1 − y )  2 1−y 2 + 2 + z (1 − z )  2 1−z 2 = x + y + z =1
                                      3
                                                   z
                                             2
                       2
                                y
                                                      z
                                                                        2
                                                        2 = x + y + z =1 . Thus
                                                              2
                                                                   2
                                         3
                   3
                                        z (1 − z )
                  y (1 − y )
                               1−y
                                                     1−z
                 x x 2 + +  y y 2 + +  z z       1 1
                                           2 2
                                       3
                                      3 x (1−x )+y (1−y )+z (1−z
                                 2
                                                   2 2
                                               3 3
                                                           2 2
                                                       3 3
                1−x
                       1−y
                              1−z
               1−x  2  1−y  2  1−z 2 ≥ ≥   x (1−x )+y (1−y )+z (1−z ) ) (ii). From (i) and (ii), we obtain
                                      √
                 x      y      z     3 3
               1−x 2 +  1−y 2 +  1−z 2 ≥  2  .
                                                                                         √
                                    1    x       y      z                               3 3
               When  x = y = z = √    ,    2 +    2 +    2 reaches the minimum value        .
                                     3  1−x    1−y    1−z                                2
               3.93        Positive numbers  a 1 ,a 2 , ··· ,a n  and  b 1 ,b 2 , ··· ,b n
               satisfy  a 1 + a 2 + ··· + a n ≤ 1,b 1 + b 2 + ··· + b n ≤ n ,
                                                               n
               show  (  1  +  1  )(  1  +  1  ) ···(  1  +  1  ) ≥ (n + 1) .
                      a 1  b 1  a 2  b 2    a n  b n
                                                                                                    ) ≤
               Proof: The given conditions together with Mean Inequality result in a 1 a 2 ··· a n ≤ ( a 1 +a 2 +···+a n n  1
                                                                                              n          n n

                                                                                                                            n


               (i), and  b 1 b 2 ··· b n ≤ (  b 1 +b 2+···+b n )=1 (ii). In addition,   1  +  1  =  1  + ··· +  1  +  1  ≥ (n + 1)  n+1  1  1
                                           n
                                                                          a i  b i  na i        na i  b i              na i    b i

                                  n

 1  1  1  1  1                1       1                                                  n terms
 +  =  + ··· +  +  ≥ (n + 1)  n+1          (i =1, 2, ··· ,n ) (iii).
 a i  b i  na i  na i  b i   na i     b i

 n terms
               From (i),(ii),(iii), we can obtain

                                                                                           n
                 1     1     1    1        1    1                       1          1              1
                    +          +      ···     +       ≥ (n + 1) n n+1       ·               ·
                                                                        n n
                 a 1  b 1   a 2   b 2      a n  b n                   (n )     a 1 a 2 ··· a n  b 1 b 2 ··· b n

                                                                          1
                                                                                  n n
                                                       ≥ (n + 1)  n n+1       · (n ) · 1
                                                                          n n
                                                                        (n )
                                                                  n
                                                       =(n + 1) .
                                            Download free eBooks at bookboon.com
                                                            121
   116   117   118   119   120   121