Page 116 - Elementary Algebra Exercise Book I
P. 116

ELEMENTARY ALGEBRA EXERCISE BOOK I                                             inequAlities




               3.81      If x, y  are real numbers, and  y ≥ 0,y(y + 1) ≤ (x + 1) , show  y(y − 1) ≤ x .
                                                                                   2
                                                                                                        2
                                                              2
                                                                                                 2
                                                                                                       2
                                                                                                                          2
                                                                                                                                        1 2
                                                                                                                                                      2
               Proof: If 0 ≤ y ≤ 1, obviously y(y − 1) ≤ 0 ≤ x . If y> 1, then y(y + 1) ≤ (x + 1) ⇒ y + y +    1  ≤ (x + 1) +  1  ⇒ (y + ) ≤ (x + 1) +    1  ⇒ 1 <
                                                                                                                                             2
                                                                                                                   2
                                                                                           2
                                                                                                               4
                                                                                                 2
                                                                                                                                 1 2
                                                                                                                                        2
                                                                                                                              4
                                                                         y(y +   1) ≤ (x + 1) ⇒ y + y +  1    ≤ (x + 1) +  1  ⇒ (y + ) ≤ (x + 1) +  1  ⇒ 1 <  4
                                                                                        2   1    1      4              4         2               4

                                                                                              −
                                                                                       1
                                                           2
                                                                                   2
            2
                                             1 2
      2
                               2
                                                                             (x + 1) +
 y(y + 1) ≤ (x + 1) ⇒ y + y +  1  ≤ (x + 1) +  1  ⇒ (y + ) ≤ (x + 1) +  1  ⇒ 1 < y ≤  y ≤  (x + 1) + 1 2 4 . The inequality
                                                                                                 2
                                                                                         −
                                                                                       4
                    4              4         2                 4
 2
 y ≤  (x + 1) +  1  −  1  to prove   2  2  2 2  2  2  1  1  1 2  2  2 1  1 1  ⇔ (y − ) ≤ x +  1 1       2  1 1  1 1 1  1
                                                                    1 2 2
                                                                          2
                                                                    1 2
                                                                  1
                                                                           22 1
                                                                                          2 2
                                                                                                 1
                                                                                1
                                                                                                     1
                                  2
                          y(y − 1) ≤ x ⇔ y − y + ≤ x + ⇔ (y − ) ≤ x + 2
                                        2
                                                                    1 2
  4   2            y(y − 1) ≤ x ⇔ y − y +     4 +  1  4 x + 2  4  1 4 4⇔ (y − ) ≤ x + 4 4 ⇔ y ≤  x + x + + 2    ⇔ ⇔
                                                                                           x
                                                                                              4+
                     y(y − 1) ≤ x ⇔ y − y
                                                                                                 4 2 +
                                                4 ≤ x +
                                                                                ⇔ y ≤ y ≤ x + 2
                                                                                 ⇔
                                                                                               + + ⇔
                     y(y − 1) ≤ x ⇔ y − y + ≤
                                                                    2 2
                                                                                                     2 ⇔
                                                    ≤ x + ⇔ (y − ) ≤ x + ⇔ y ≤
                                                                  2
                                                                              4
                                                                                               4
                                                                                                 4
                                                                    2
                                                           4
                                      2
                                                                             1
                                                    2
                                                        1
                                                                                               1
                                                                                           2

                                      1− y +
                                                                  2 ) ≤ x +
                   y(y − 1) ≤ x 2  1 ⇔ y         1  4 1 ≤ x +     1 2     2     4        x +  2 +  1  2
                                                          ⇔ (y −
                                                                                1
                         (x + 1) + −        x + + 1  1  ⇔ 4    (x + 1) + 1  ≤    2 ⇔ y ≤       4 2  1 ⇔
                                                                     1
                                                                                  1
                                                                                                    ≤ 1
                                   1
                                                                  2 1
                                                                2 2
                                                                              2 1
                                              2 1 1
                           2 1
                                                                            2 4
                                        ≤ 2 14
                               2 1 1
                                                                           x + +1 ⇔ (x + 1) + 2 1 2
                                         2
                         2
                                                                                  1
                                   1
                                                                      1
                                          x + 1
                               1
                                                                                  4 +1
                                                                            x
                                                                    4 +
                                                          (x + 1)
                                                                            x2
                    (x + 1)
                           2
                                               4 2 +
                                           2
                                          x
                             4 +
                                                          (x + 1) + ≤
                  (x + 1) + −      4 ≤ x + +       1  2 ⇔ (x + 1) + 2  4 ≤ x + +1 ⇔ (x + 1) + 2   4   1  ≤
                    (x + 1) + − ≤
                                                                                4 + +1 ⇔ (x + 1) + ≤
                                                   2 ⇔
                                  2 ≤
                              4 4 2 −  2  2    4 +  4  4 + ⇔         4          4 +  4    ⇔ (x + 1) +  4 ≤
                                                                                                    4
                                                                     4 ≤
                                                   2
                                                                                                      4
                            1
                                                                   1
                                             1
                                                                                1
                                                 1
                        2 2
                                                                                              1 2
                                                                          1 2
                                       1 2
                                                               2 2
                                                                           x + +1
                                        x + +

                                                         (x + 1)
                  (x + 1) +      1 x + +1 ⇔ x +2x +1 ≤ x +2 +        x + +1 ⇔ x ≤ ⇔ (x + 1) +       1  ≤

                                                          1
                                                2
                                                                               1
                                                   ⇔
                                                                      2 ≤
                                                                                         x +
                                   2 ≤
                                                                                           2
                           1
                                                                           1
                       1
                                                                                1
                                2 1 2
                 2  2 1  x + +2 −   1 1  4  2  2 4  2  1  1 1 4  2  2  4  2  2 1 4 +1 ⇔ x ≤ x + 4 + 1 1 4
                                                                                             2 1
                              2 4
                                                                               4 1 4
                                                                                           2
                                                                                1
                                                                     x + 1
                       1
                                              2
                                                              2
                                                                      x
                                                                       2
                     4 +
                                    4 +1 ⇔ x +2x +1 ≤ x +2
                 x 2   4 +2 4 x + +1 ⇔ x +2x +1 ≤ x +2 x + +1 ⇔ x ≤                         x
                              x
                                                                                            x2
                                2
                                                                                4
                 x + +2 x + +1 ⇔ x +2x +1 ≤ x +2
               x + +2             4 +  4               4  4 4            4 +  4 +1 ⇔ x ≤       4 +  4 4
                                                                              4
                                                                           4
                       4
                                                                                4
                     1
                                                                         1
                 2
                                                       1
                                                            2
                                  1
                                            2
                                                                              1
                                                                                           2
                                                                     2
                              2
               x + +2       x + +1 ⇔ x +2x +1 ≤ x +2                x + +1 ⇔ x ≤          x +  1 which is
                     4            4                    4                 4    4                4
               obviously valid.
               3.82       If real numbers  x,y,z  satisfy  x + y + z =2, show  x + y + z ≤ xyz +2.
                                                                   2
                                                              2
                                                                        2
               Proof: If one (or more) of x,y,z  is not positive, without loss of generality let z ≤ 0. Since
                                                                    1   2   2    1   2   2   2
                                                       2
                                  2
                             2
                                             2
                                                  2
               x+y ≤      2(x + y ) ≤     2(x + y + z ) =2, xy ≤ (x +y ) ≤ (x +y +z )= 1, then
                                                                    2            2
               2+ xyz − (x + y + z) = [2 − (x + y) − z(xy − 1)] ≥ 0, that is,  x + y + z ≤ xyz +2.
               If  x,y,z  are all positive, let  0 <x ≤ y ≤ z .
               When  z ≤ 1,  2+ xyz − (x + y + z)=1 − x − y + xy +1 − xy − z + xyz = (1 − x) − y(1 − x)+

                             2+ xyz − (x + y + z)=1 − x − y + xy +1 − xy − z + xyz = (1 − x) − y(1 − x)+
                           (1 − xy) − z(1 − xy) = (1 − x)(1 − y) + (1 − xy)(1 − z) ≥ 0

 2+ xyz − (x + y + z)=1 − x − y + xy +1 − xy − z + xyz = (1 − x) − y(1 − x)+ (1 − xy) − z(1 − xy) = (1 − x)(1 − y) + (1 − xy)(1 − z) ≥ 0 , that is,x + y + z ≤ xyz +2

 (1 − xy) − z(1 − xy) = (1 − x)(1 − y) + (1 − xy)(1 − z) ≥ 0
     x + y + z ≤ xyz +2.
                                                                                 √
                                                2
                                                           2

               When z> 1, x + y + z ≤        2[z +(x + y) ]=      2(2 + 2xy)= 2 1+ xy ≤ 2+ xy < 2+ xyz
       √
 2
 2
 x + y + z ≤  2[z +(x + y) ]=  2(2 + 2xy)= 2 1+ xy ≤ 2+ xy < 2+ xyz .
               As a conclusion,  x + y + z ≤ xyz +2 holds.
               3.83       Given the function  f(x) = ax + bx + c  (a> 0), and the two roots of the
                                                             2
                                                            1
               equation  f(x) − x =0 satisfy 0 <x 1 <x 2 < . (1) When x ∈ (0,x 1 ), show x< f(x) <x 1 ;
                                                            a
               (2) Assume the curve of the function  f(x) is symmetric about the straight line  x = x 0, show
               x 0 <  x 1 .
                     2
                                            Download free eBooks at bookboon.com
                                                            116
   111   112   113   114   115   116   117   118   119   120   121