Page 119 - Elementary Algebra Exercise Book I
P. 119

ELEMENTARY ALGEBRA EXERCISE BOOK I                                             inequAlities




                                                         80
                                                             1
               3.87        For  k ∈ N , show  16 <          √ < 17.
                                                              k
                                                         k=1
                            √         √      √                √     √           √     √         √
               Proof: From  k − 1 <     k<     k +1, we have  k +     k − 1 < 2 k<      k +1+     k .
               k ∈ N , then
                           √ √                       √         √                √     √
                   1         √ √          1       √        √            1√    √
               √     √ <     12 k< √     1  √   ⇒ 2( k +1 −      k) < √ < 2( k −        k − 1) ⇒
                      1
                                                                   1
                 k+1+ k √ <   12 k< √   k+ k−1 ⇒ 2( k +1 −   k) < √ < 2( k k −  k − 1) ⇒
                                         √
                  √
                    k+1+ k       n     k+ k−1                      k
                                  n
              √  √      √ √          1 1   √ √ √   √    , where  1 ≤ m ≤ n , and  m, n ∈ N . Choose

               2( n +1
                           m)
                                    √ < 2( n −m − 1)
            2( n +1 − −   m) < <    √ < 2( n −       m − 1)
                                      k k
                                k=m       80
                                k=m
                                              1
               n = 80,m =1, then  16 <       √ . Choose  n = 80,m =2, then
                                               k
                    80 80                 k=1                                    80
                         1 1    √ √               √ √                                1

                1+
               1+       √ < 2( 80 − 1) + 1 < 2 81 − 1 = 17 17. Hence,  16 <         √ < 17.
                        √ < 2( 80 − 1) + 1 < 2 81 − 1 =

                         k k                                                          k
                    k=2
                    k=2                                                         k=1
                                                                    ) .
               3.88        For  n ∈ N ,n > 1, show  n! < (       n+1 n
                                                                  2
               Proof 1: (applying mean inequality)
               n!=1 · 2 · ··· · k · ··· · (n − 1) · n  (i),
               n!= n · (n − 1) · ··· · (n − k + 1) · ··· · 2 · 1 (ii).
                            2
                                                                                                                                     ) =(
                                                                                                                                                                                  ) =
               (i)× (ii): (n!) = (1 · n)[2(n − 1)] · ··· · [k(n − k + 1)] · ··· · [(n − 1)2](n · 1). Since 1 · n ≤ ( 1+n 2      2+n−1 2     1+n 2                         k+n−k+1 2
                                                                                                               ) , 2(n − 1) ≤ (
                                                                                                                                                ) , ··· ,k(n − k + 1) ≤ (
                                                                                                             2 2
                                                                                                                                  2
                                                                                                                                                                             2
                                                                                                                                             2 2
                                                                                                                                                  1+n 2 ,k(n − k + 1) ≤ (
                                                                                                                                                                                 ) =
                                                                                                                                    )
                                                                                                 1
                                                                                                                       n−1+2 2 (
                                                                                                1+n 2 · n ≤ ( 1+n ) , 2(n − 1) ≤  2+n−1 2  1+n  ) , ···                  k+n−k+1 2
                                                                                                                                   1+n 2 =(
                                                                                              (    ) , ··· , (n − 1)2 ≤ (    ) =(      ) ,n · 1 ≤ (  )                      2
                                                                                                                                            2
                                                                                                                                 2
                                                                                                            2
                                                                                                                          2
                                                                                                                                    2 2
                                                                                                                                                   2 2
                                                                                                 2 2
                                                                                                                            ) =(
                                                    ) , ··· ,k(n − k + 1) ≤ (
       1 · n ≤ ( 1+n 2               2+n−1 2     1+n 2                        k+n−k+1 2      ( 1+n ) , ··· , (n − 1)2 ≤ ( n−1+2 2  1+n ) ,n · 1 ≤ ( 1+n )
                    ) , 2(n − 1) ≤ (
                                          ) =(
                                                                                      ) =

                                       2−1 2
                                                  2n 2
                                                                                  2
                  2n 2
                                          )
                            n−1+2 2(
                                                       1+n 2 ,k(n − k + 1) ≤ (
                                                                                      ) =
    1+n 2 · n ≤ ( 1+  ) , 2(n − 1) ≤  2+n 1+n 2=( 1+  ) , ···                 k+n−k+1 2         2                        2         2              2
       1
   (    ) , ··· , (n − 1)2 ≤ (    ) =( 2   ) ,n · 1 ≤ (   )                       2
                                                  2
                  2
                              2
                                                        2
      2n 2
                                         2n 2
                                                                                                   ) ] ⇔ (n!) ≤ (
                                                                                                                                       )
                                                          ) . There are n  terms. Thus (n!) ≤ [(
                                                                                                                       )
                                  ) =(
   ( 1+  ) , ··· , (n − 1)2 ≤ ( n−1+2 2  1+  ) ,n · 1 ≤ (  1+n 2                         2     1+n 2 n        2    n+1 2n  ⇔ n! ≤ ( n+1 n
      2                       2          2              2                                       2                   2                2
 2
                                                                             ) .
                                             ) . Since  n> 1, then  n! < (
        ) ] ⇔ (n!) ≤ (
 (n!) ≤ [( 1+n 2 n  2    n+1 2n  ⇔ n! ≤ (  n+1 n                          n+1 n
                            )
      2                   2               2                                2
               Proof 2: (applying mathematical induction)
                                                         ) = . The inequality holds.
               When  n =2, LHS=2! =2, RHS=(           2+1 2   9
                                                       2      4
                                                                          ) . Then
               Assume the inequality holds for  n = k , that is,  k! < ( k+1 k
                                                                        2
                             k+1
                                                          k+1
                                                            ) (k + 1)) (k + 1).
               k!(k + 1) < (k!(k + 1) < ( k+1 kk         k+1 kk
                                ) (k + 1) ⇔ (k + 1)! < () (k + 1) ⇔ (k + 1)! < (
                              2 2                         2 2
                                                 k+1 k k+1
                                                                                k+1 k+1
                                                                (k+1)+1 k+1
                ( k+1 k         (k+1)+1 k+1  ⇒ 2( k+1 k    ) < [ (k+1)+1 k+1 ⇒ 2( k+1 k k+1  (k+1)+1 k+1  ⇒      k+1 k+1    (k+1)+1 k+1
                                                                                        < [
                                                                                                   ]
                    ) (k+1) < [
                                                    ) (
                                       ]
                                                                      ]
                                                                                    )
                                                                                                (k+1)+1 k+1
                  2                2            (  2 ) (k+1) < [  2     ]      ⇒ 2( 2  ) (  ) < 2[     ]    ⇒ 2(    )    < [       ]    ⇒
                                                        2
                 (k+1)+1 k+1  2  ) k+1             2                2              2     2         2              2            2
                        ]
                            ( (k+1)+1 k+1
                                                         ]
        ]
             ⇒ 2(
                    2 )
 ) (
 ]
 ) (k+1) < [
 ( k+1 k  (k+1)+1 k+1  ⇒ 2(  k+1 k k+1 ) < [  (k+1)+1 k+1 2 < [ k+1 k+1  < [ k+1  ]  ⇒ 2 < [ (k+1)+1 k+1 (  2  ) k+1 . Binomial theorem implies that
 2  2  2  2  2     2            2                    2        k+1
 ]
 2 < [ (k+1)+1 k+1 (  2  ) k+1  1  k+1      1                    k+1 kk          (k+1)+1 k+1k+1
                                                                                  (k+1)+1
                                                                 k+1
                                                                    ) (k + 1)
 2  k+1        (1 +     )    = 1 +(k + 1)     + ··· > 2. Thus  ((   ) (k + 1) < [   < [  ]]   holds.
                     k+1                   k+1                    2 2               2 2
                                                        )  holds according to mathematical induction
               Hence, the original inequality  n! < ( n+1 n
                                                      2
               above.
                                            Download free eBooks at bookboon.com
                                                            119
   114   115   116   117   118   119   120   121