Page 120 - Elementary Algebra Exercise Book I
P. 120

ELEMENTARY ALGEBRA EXERCISE BOOK I                                             inequAlities




                                                                                        1
                                                                                            2
               3.89       Let a 1 ,a 2 , ··· ,a n  be a permutation of 1, 2, ··· ,n , show  + + ··· +  n−1   ≤  a 1  +  a 2  + ··· +  a n−1
                                                                                        2
                                                                                                       n
                                                                                            3
                                                                                                                  a 3
                                                                                                                              a n
                                                                                                             a 2
 1  + + ··· +  n−1  a 1  +  a 2  + ··· +  a n−1 .
  2
 2  3       n  ≤  a 2  a 3         a n
               Proof: Since  a 1 ,a 2 , ··· ,a n  is a permutation of  1, 2, ··· ,n , we have
               (a 1 + 1)(a 2 + 1) · ··· · (a n−1 + 1) ≥ (1 + 1)(2 + 1) · ··· · (n − 1 + 1) = a 1 a 2 ··· a n a n . Thus
              (a 1 + 1)(a 2 + 1) · ··· · (a n−1 + 1) ≥ (1 + 1)(2 + 1) · ··· · (n − 1 + 1) = a 1 a 2 ···
              2
                                                                                            1a 1 +1
                                                                          a 1 +1
                                               1 a
          1  + + ··· +  n−1  a n−1 a 1 + + +···+ + a n−1n−1  1 a 1 1  1 a 2 1  a 1 a n−1n−1  111  1 1  + a 2 +1 1  1 1  a n−1 +1 +  a 2 1 +1  1 1  + a 1 +1+1 a 2 +1  1  a n−1 +1  a n−1 +1
                                       + ···+
                                                  + + +···++ +···++ + +···+
                                               a n−1
                                 + + +···+
                                                 =
                                                                                  a n−1
                                                                                                              a n−1
                a 1
                                      1a 2
                    a 2
                                   a 1
                                   1 a 2
                                                                                                       =+···+ 1
                                                                                                                  + ≥1
                                                                                     +···++ + +···+= 1
                                                                                                                         +···+ a 1 +1
                                                                                           + 1
                                                                        ++ +···+ a n−1
                                                                                                  ≥ a n−1
                                                                    =+ + +···++ a 1
                                                                          a 2
          2   3  a 2  + +···+≤ a n a 2  1 a 3  2a 3  n a n    a a 12 1  a2  a n a nn   + 2a+···+ a 3 a n a n + + +···+  a n 3 + + +···+ a 3 =  +  a n + ≥ a 2 +1 +···+  ≥
                                                                  a
                         n
                                                                                                     a
                                                                      a 1 1a 1
                                                        a 23
                    a 3
                                                                                        a 1 a 1
                                                                           a 22
                                   a 2
                                                                                            a 2
                                                                                             a n a 2
                                                                                                          a 1
                                                                                                               a 2 a n
                                               a n a n                a 2  a 3      a n  1  2        a n  a 1  a 2     a n  a 1  a 2    a 3        a n

                                                  n (a 1 +1)(a 2 +1)·····(a n−1 +1)+1) a n−1 +1
                                              a 2 +1
                               1
                                    1
                      1
                                        a 1 +1
                  1
                                 n
 + +···+  + + +···+  n + + +···+  n=  +         n +···+    a 1 a 2 ···a n n  n (a 1 +1)(a  ≥ n   . In
                                      ≥ n +
                                                                         ≥ n 2 +1)·····(a n−1 +1)
 a 1  a 2  a n−1  1  1  a n−1 n (a 1 +1)(a 2 +1)·····(a n−1 +1)(a 1 +1)(a 2 +1)·····(a n−1  ≥ n
                                                                ≥
                                               a
 a 2  a 3  a n  1  2  a n  a 1  a 2  a 1 a 2 ···a na n  a 1  a 2 a 1 a 2 ···a n 3  a n
                                                                             a 1 a 2 ···a n
                                             1
                                                       2
                               1
                                   1
                                                   1
 n  n (a 1 +1)(a 2 +1)·····(a n−1 +1)  ≥ n  addition,  n =( + + ··· + ) + ( + + ··· +  n−1 ). Hence,
 a 1 a 2 ···a n                1   2         n     2   3          n
                                                    a
               11  + + ··· ++ + ··· +  n−1n−1  a 1 a 1  ++  a 2 a 2  + ··· ++ ··· +  a n−1n−1 .
                    22
               2 2  3 3        n n  ≤≤  a 2 a 2  a 3 a 3     a nn
                                                     a
               3.90        If real numbers  a, b, c  satisfy  a + b + c =3, show
                   1     +     1    +      1    ≤ .
                                                   1
                             2
                                         2
                 2
               5a −4a+11   5b −4b+11   5c −4c+11   4
                                                9
               Proof: If  a, b, c  are all less than  , then we can show   2  1  ≤  1  (3 − a)  ( ). Actually
                                                5                     5a −4a+11   24                                      2                       3      2                        2
                                                                                                         ( ) ⇔ (3−a)(5a −4a+11) ≥ 24 ⇔ 5a −19a +23a−9 ≤ 0 ⇔ (a−1) (5a−9) ≤
                                 2
                                                               2
                                                                                        2
                                                        3
               ( ) ⇔ (3−a)(5a −4a+11) ≥ 24 ⇔ 5a −19a +23a−9 ≤ 0 ⇔ (a−1) (5a−9) ≤ 0 ⇔ a<                        9 5

                                                       3
                                2
                                                                                       2
                                                              2
              ( ) ⇔
            0 ⇔ a<   9(3−a)(5a −4a+11) ≥ 24 ⇔ 5a −19a +23a−9 ≤ 0 ⇔ (a−1) (5a−9) ≤
                     5
           0 ⇔ a< . Similarly, we can obtain        2  1    ≤  1  (3 − b),  2  1  ≤  1  (3 − c) . Add these
                    9
                    5                             5b −4b+11   24         5c −4c+11  24
                                                                             1
                                                                                                  1
                                                                                                             1
                                               1
                                                          1
                                                                     1
                                                                                        1
               three inequalities up to obtain  1 5a −4a+11 1  5b −4b+11 1  5c −4c+11 1  ≤  24 (3−a)+ (3−b)+ (3−c) =  24 [9−(a+b+c)] =
                                                    +
                                                               +

                                                        2
                                             2
                                                                   2
                                                                                                        1
                                                                                                  24
                                                                                             1
                                                                                   1
                                                                                       24
                                                              2
                                        1 2
                                                                                             24
                                                                                  24
                                      5a −4a+11  +  5b 2 1 −4b+11  +  5c −4c+11  ≤  24  (3−a)+ (3−b)+ (3−c) =  24 [9−(a+b+c)] =
                                         [9 − 3] =
    1
 1  +  1  +  1  1  (3−a)+ (3−b)+ (3−c) =  1  [9−(a+b+c)] =  1  [9 − 3] =  1  .  4
 1
                                       24
 2
 2
 2
 5a −4a+11  5b −4b+11  5c −4c+11  ≤  24  24  24  24    24  4
 1  [9 − 3] =  1
 24  4
                                                         9
                                                                                                   9
               If at least one of  a, b, c  is not less than  , without loss of generality, assume  a ≥ , then
                                                         5                                         5
                                                          9
                                                      9
               5a − 4a + 11 = 5a(a − ) + 11 ≥ 5 · · ( − ) + 11 = 20 . Thus            2  1    ≤  1  . Since
                                                              4
                                        4
                  2
                                        5             5   5   5                     5a −4a+11   20
                  2                 2 2       2               4                  1    <  1
               5b − 4b + 11 ≥ 5 · ( ) − 4 · ( ) + 11 = 11 −     > 10 , then   2            . Similarly, we
                                    5         5               5              5b −4b+11   10
                                                                        1
                                                                                          1
                        1
                                                                                     1
                                                            1
                                                                                1
                                                                                               1
                                                1
                                 1
               have   5c −4c+11  <  10 . Hence,   5a −4a+11  +  5b −4b+11  +  5c −4c+11  <  20  +  10  +  10  = .
                                                                     2
                      2
                                              2
                                                          2
                                                                                               4
                                                                                                       2 .
                                                                                            n
                                                                           2
                                                                                3
                                                                     1
               3.91       Given a natural number n> 1, show C + C + C + ··· + C >n × 2                n−1
                                                                                            n
                                                                           n
                                                                     n
                                                                                n
               Proof: According to Binomial theorem, we have 2 = (1 + 1) = 1+ C + C + ··· + C , thus
                                                                        n
                                                                                  1
                                                                                                   n
                                                             n
                                                                                        2
                                                                                        n
                                                                                                   n
                                                                                  n
               C + C + C + ··· + C =2 − 1. On the other hand, the geometric series with first term 1
                 1
                                             n
                                        n
                             3
                       2
                                        n
                            n
                       n
                 n
                                                  n
                                                         n
                                                                                           3
               and common ratio  2 is  S n =  1·(1−2 )  =2 − 1, i.e.  2 − 1 = 1+2+2 +2 + ··· +2       n−1 .
                                                                                      2
                                                                     n
                                               1−2
                                                                                         √
                                                      √
                                                                                   √
                                      2
                                                                                         n
                    n
                                                      n
                                         3 n−1
                                   3
                                                                      3
                                                                                           2
                   2 −1
                        2 −1 1+2+2 +2 +···+2
                                                                                            1+2+3+···+(n−1)
                                                                 2 3
                                                            2
                                                 n
               Therefore,  = n  =  2 1+2+2 +2 +···+2 n−1 √  > 1 × 2 × 2 × 2 × ··· × 2 n−1  n−1 n  = 2 1+2+3+···+(n−1)  =      =
                                             >
                                                        1 × 2 × 2 × 2 × ··· × 2 =
                    n     n        n     n
                                                       n−1                                            n−1
                                                                           2
                                         n
                                                                                            n
                                                                     1
                                                                                3
                     n
                n  n(n−1)  n(n−1) n−1 , that is, 2 − 1 >n × 2  2 . Hence, C + C + C + ··· + C >n × 2   2 .
                                  n−1
                  2  2  2 =2  2 =2  2                                n    n     n          n
                           2
               3.92       Positive numbers x,y,z  satisfy x + y + z =1, find the minimum value
                                                                      2
                                                                 2
                                                                           2
                                  z
                           y
                    x
               of   1−x 2 +  1−y 2 +  1−z 2.
               Solution: (applying mean inequality)
                                            Download free eBooks at bookboon.com
                                                           120
   115   116   117   118   119   120   121