Page 117 - Elementary Algebra Exercise Book I
P. 117

ELEMENTARY ALGEBRA EXERCISE BOOK I                                             inequAlities




               Proof: (1) Let G(x) = f(x) − x . Since x 1 ,x 2 are the two roots of the equation  f(x) − x =0,

               then G(x) = a(x − x 1 )(x − x 2 ). When x ∈ (0,x 1 ), since x 1 <x 2 ,a > 0, then G(x) = a(x − x 1 )(x − x 2 ) > 0 ⇒ f(x) − x> 0 ⇒ f(x) >x

 G(x) = a(x − x 1 )(x − x 2 ) > 0 ⇒ f(x) − x> 0 ⇒ f(x) >x.  x 1 − f(x)= x 1 − [x + G(x)] = x 1 − x − a(x − x 1 )(x − x 2 )=(x 1 − x)[1 + a(x − x 2 )]

                                                                             1
 x 1 − f(x)= x 1 − [x + G(x)] = x 1 − x − a(x − x 1 )(x − x 2 )=(x 1 − x)[1 + a(x − x 2 )] . Since  0 <x 1 <x 2 < , we have  x 1 − x> 0, 1+ a(x − x 2 ) = 1+ ax − ax 2 > 1 − ax 2 > 0
                                                                             a
 x 1 − x> 0, 1+ a(x − x 2 ) = 1+ ax − ax 2 > 1 − ax 2 > 0, thus x 1 >f(x).

                            b
               (2)  x 0 = −   . Since  x 1 ,x 2  are the roots  of the equation  f(x) − x =0 , that is,
                           2a
               x 1 ,x 2  are the roots of the equation  ax +(b − 1)x + c =0 .  Vieta’s formula implies
                                                          2
                            b−1                                         b    a(x 1 +x 2)−1  ax 1 +ax 2−1
               x 1 + x 2 = −   , thus  b =1 − a(x 1 + x 2 ), then  x 0 = −  =          =           . Since
                             a                                          2a       2a           2a
               ax 2 < 1, that is,  ax 2 − 1 < 0, then  x 0 =  ax 1 +ax 2 −1  <  ax 1  =  x 1 .
                                                             2a        2a    2
                                                                                             2
                                                                                                     2
                                                                                     2
                                                                                    a +b 2  b +c 2  c +a 2   a 3  b 3  c 3
               3.84        Let  a, b, c  are positive numbers, show  a + b + c ≤          +       +       ≤    +    +
                                                                                      2c      2a      2b     bc   ca   ab
   2
 2
           2
 a +b 2  b +c 2  c +a 2  a 3  b 3  c 3
 a + b + c ≤  +  +  ≤  +  +   .
 2c  2a    2b     bc   ca   ab
                                                                                        2 1
                                                                                                   1
                                                                                   2
                                                                             2
               Proof:  Without loss of generality, assume  a ≥ b ≥ c> 0, then  a ≥ b ≥ c ,  ≥  1  ≥ , then
                                                                                          c    b   a
                                                                            1
                                                                                                   1
                                                              1
                                                                     1
                                                                                    1
                   1
                                                                                           1
                                                        1
                                 1
                                          1
                          1
                                                 1
               a · + b · + c · ≤ a · + b · + c · ,a · + b · + c · ≤ a · + b · + c · . Add
                                                                                                2
                                                                                  2
                                                                  2
                                                                          2
                                                     2
                                                                                         2
                                                           2
                        2
                               2
                                       2
                                              2
                 2
                   a      b       c       b      c      a     a      b      c       c      a       b
                                                             2
                                                                    2
                                                                           2
                                                            a +b 2  b +c 2  c +a 2  3  3    3  1   1    1
               these two inequalities up to obtain  a + b + c ≤  +      +      .  a ≥ b ≥ c ,   ≥    ≥ ,
                                                             2c      2a     2b                bc   ca   ab
                     3  1   3  1   3  1    3  1   3  1   3 1   3  1   3  1   3  1    3  1   3  1   3 1
               then a · +b ·    +c ·    ≥ a ·  +b · +c      ,a · +b ·     +c ·   ≥ a ·   +b ·   +c . Add
                       bc     ca     ab      ab      bc    ca    bc     ca     ab      ca     ab    bc
                                                                            2
                                                                                   2
                                                                                          2
               these  two  inequalities  up  to  obtain     a 3  +  b 3  +  c 3  ≥  a +b 2  +  b +c 2  +  c +a 2  .  Hence,
                                                             bc  ca   ab    2c      2a     2b
                             2
                                    2
                                            2
                            a +b 2  b +c 2  c +a 2  a 3  b 3  c 3 .
               a + b + c ≤       +       +       ≤    +    +
                             2c      2a      2b     bc   ca   ab
               3.85       Solve the inequality log (x +3x +5x +3x + 1) > 1 + log (x + 1).
                                                           12
                                                                                6
                                                                                                   4
                                                                  10
                                                                         8
                                                                                                2
                                                        2
                                                                                6
                                                                                                 4
                                                                                                                                  6
                                                           12
                                                                                                             12
                                                                   10
                                                                                                                    10
                                                                                                                           8
                                                                          8
               Solution: The inequality is equivalent to log (x +3x +5x +3x + 1) > log (2x + 2) ⇔ x +3x +5x +3x +1 >
                                                                                             2
                                                                                                           12
                                                                 10
                                                                                                                         8
                                                        2 12
                                                                                                                                6
                                                                               6
                                                                                                                  10
                                                                        8
                                                                                               4
                                                    4 log (x +3x +5x +3x + 1) > log (2x + 2) ⇔ x
                                                                                       8
                                                                         12
                                                                                10
                                                               4
                                                  2x +2 ⇔ 2x +1 <x +3x +5x +3x               6               +3x +5x +3x +1 >
                                                      2
                                                                                           2
 6
                               8
     4
 10
 12
                        10
                 12
                                      6
 8
                                                                                            6
                                                              4
                                                                       12
                                                                              10
                                                  4
                                                                                     8
 log (x +3x +5x +3x + 1) > log (2x + 2) ⇔ x +3x +5x +3x +1 >     2x +2 ⇔ 2x +1 <x +3x +5x +3x . Obviously
 2
 2
 4
 10
 8
 12
 4
 2x +2 ⇔ 2x +1 <x +3x +5x +3x 6
               x =1 does not satisfy the inequality, thus we can divide both sides by  x  to obtain
                                                                                              6
                2  2  1  1  6  6  4  4  2  2    6  6  4  4  2  2     2  2      2  2  3  3  2  2
                        1 1
                                                                                  2 2
                                                                         2 2
                                                         4 4
                                                               2 2
                                                                                               2 2
                        6 <x +3x 4 4
                              6 6
                                          2 2
                                       +5x +3 = x +3x +3x +1+2x +2 = (x +1) +2(x +1) ⇔
                                                   6 6
                                                                                        3 3
                x 2 + 2 2 x + 2 6 <x +3x +5x +3 = x +3x +3x +1+2x +2 = (x +1) +2(x +1) ⇔
                          6 <x +3x +5x +3 = x +3x +3x +1+2x +2 = (x +1) +2(x +1)
                      1 + +
                  x
                       x
                         6 <x +3x +5x +3 = x +3x +3x +1+2x +2 = (x +1) +2(x +1) ⇔ ⇔
                    2 2
             1
                                           2
                                    3
                              2
                3
                         1 x
            ( ) + 2( ) < (x + 1) + 2(x + 1)
                   3 x x
                                              2
                                       3
                                 2
                        x
                1
              2( ) + 2( ) < (x + 1) + 2(x + 1)
                                  2 2
                                        3 3
                          2 1 1
                 2 1 1
                    3 3
                                                                     3
                                               2 2
                      x
                       2
                         x 2( ) < (x + 1) + 2(x +
             x  x ( ) + 2( ) < (x + 1) + 2(x + 1) 1). Let  g(t)= t +2t , then the inequality becomes
                 (
                  2 2 ) +
                 x x      x x
                           2 2

                  1
                g( ) <g(x + 1). Since  g(t)= t +2tg(t)= t +2t is an increasing function, then the inequality is
                           2
                                                  3 3
                  x 2
                                                                                          √
               equivalent to   1 1  2 2        2 22 2     2 2                         2     5−1  (the other
                              2 <x +1 ⇔ (x ) + x − 1 > 0<x +1 ⇔ (x ) + x − 1 > 0 whose solution is  x >
                              x x 2                                                         2
                             √
                      2       5+1
               part  x < −          is  deleted).  Hence,  the  original  inequality  has  the  solution  set
                              2

                         √         √
                          5−1       5−1 , +∞).
               (−∞, −        ) ∪ (
                          2         2
                                            Download free eBooks at bookboon.com
                                                            117
   112   113   114   115   116   117   118   119   120   121