Page 30 - Elementary Algebra Exercise Book I
P. 30

ELEMENTARY ALGEBRA EXERCISE BOOK I                                           reAl numBers



               Solution:  M = N  implies that one element in  M  should be 0. The existence of  lg(xy)
                                                                                                  1
               implies that  xy  =0, thus  x, y  cannot be 0. Hence,  lg(xy)=0 ⇒ xy =1 ⇒ y =        .
                                                                                                  x

                                                1
               Thus  M = {x, 1, 0},N = {0, |x|, } . According to  M = N  again, we have either
                                                x

                                                       x = |x|
                                                               1
                                                        1=
                                                               x

               or

                                                               1
                                                       x =
                                                               x
                                                        1= |x|

               However,  x =1 violates the uniqueness of every element in a set. Hence,  x = −1,y = −1.

                                                                    1
                                1
                       2k+1
               Then  xy  =0 +  y 2k+1 = −2 (k =0, 1, 2, ··· );  b, x 2k  +  y 2k =2 (k =1, 2, ··· ). In the original
                                                        a,
               summation, the number of 2k +1 terms is one more than the number of 2k  terms, therefore
                    1          1           1                   1
                                       3
                           2
               (x + ) + (x +     ) +(x +     )+ ··· +(x 2001  +   )= −2  .
                    y          y 2         y 3                y 2001
                                                                 √     √
                                                                           6
               1.81     Find the integer part of the number  ( 7+        5) .
                              √     √        √     √
               Solution: Let    7+    5= x,    7 −   5= y , then
                              √                                                 √
                                                2    2            2                 2
                   x + y = 2 7, xy = 2 ⇒ x + y = (x + y) − 2xy = (2 7) − 2 × 2 = 24 ⇒                   .
                                                                                         2 2
                                             2
                                                                                    2
                                                                               2
                                                           2 2
                                                                          2
                                                                  4
                                                  2
                                                      4
                                                                                                 2 2
                      6
                                    2 3
                            2 3
                 6
               x + y =(x ) +(y ) =(x + y )(x − x y + y )=(x + y )[(x + y ) − 3x y ]=
                     2
               24[24 − 3 × 4] = 24 × 564 = 13536
                        √     √        √     √                        √     √
                                                 6
                                  6
               Hence,  ( 7+     5) +( 7 −      5) = 13536. Since  0 <   7 −   5 < 1,
                              √    √                                                     √    √
                                       6
                                                                                                  6
               then  13535 < ( 7+    5) < 13536, which implies that the integer part of  ( 7+   5)  is
               13535.
               1.82     The real numbers  x, y  satisfy  4x − 5xy +4y =5, let  S = x + y , evaluate
                                                                         2
                                                                                          2
                                                            2
                                                                                               2
                 1       1
                     +       .
               S min   S max
               Solution 1: Let  x = a + b, y = a − b  and substitute into  4x − 5xy +4y =5 :
                                                                                      2
                                                                                                   2
                                                                                      2
                                                                                2 5 − 3a
                                                    2
                                                               2
                                                                      2
                                                                   2
                       2 2
                                                             2
                                                   2
                                                                            2
               4(a + b) − 5(a + b)(a − b) + 4(a − b) =5 ⇒ 3a + 13b =5 ⇒ b =          5 − 3a 2  ≥ 0 ⇒
                   4(a + b) − 5(a + b)(a − b) + 4(a − b) =5 ⇒ 3a + 13b =5 ⇒ b =
                                                                                       ≥ 0 ⇒
                                                    1       1                     13   13
                                     5 5                +                                     2
                                                                                                    a + .
                                                                                 2
                                                                                      2
                                                            2
                                                                           2
                                                                      2
                  2  2           2 2                =(a + b) +(a − b) =2a +2b =2a +       10−6a  =  20 2  10
               5 − 3a ≥ 0 ⇒ 0 ≤ a ≤ . Therefore S min
            5 − 3a ≥ 0 ⇒ 0 ≤ a ≤                          S max                             13    13    13
                                      3
                                1    3 1                   1       1
                                   +                           +               1      1     13    3    8
                                min =  10         2    5   max =  10 . Hence,     +       =    +     = .
               When  a =0,  S min     S max            3         S max
                                        . When  a =0 = ,  S min
                                      13
                                                                  3
                                                                              S min  S max  10    10   5
                                            Download free eBooks at bookboon.com
                                                            30
   25   26   27   28   29   30   31   32   33   34   35