Page 31 - Elementary Algebra Exercise Book I
P. 31
ELEMENTARY ALGEBRA EXERCISE BOOK I reAl numBers
Solution 2: Obviously S = x + y > 0 (since x, y cannot be both zero due to
2
2
√ √
2
2
4x − 5xy +4y =5). Let x = S cos θ, y = S sin θ , and substitute into
4x − 5xy +4y =5:
2
2
5 8S − 10
2 2 . Since
4S cos θ − 5S cos θ sin θ +4S sin θ =5 ⇒ 4S − sin 2θ =5 ⇒ sin 2θ =
2 5S
8S − 10 10 10
8S − 10 .
| sin 2θ|≤ 1, then ≤ 1 ⇒−1 ≤ ≤ 1 ⇒ ≤ S ≤
5S 5S 13 3
√
1.83 For a positive integer n , find the integer part of ( n +2n + n) .
2
2
Solution: For a positive integer n , we have
√
2 √
2
2
2
2
n <n +2n<n +2n +1 = (n + 1) ⇒ n< n +2n<n +1 ⇒ 0 <
2
2
2
2
2
√ n <n +2n<n +2n +1 = (n + 1) ⇒ n< n +2n<n +1 ⇒ 0 <
2 √
n +2n − n< 1 √ 2 2 √ 2 2
n +2n − n< 1 . Let x =( n +2n + n) ,y =( n +2n − n) , then
2
√ √ √
2
2
2
2
2
2
x + y =( n +2n + n) +( n +2n − n) =4n +4n . Since 0 < n +2n − n< 1,
√
then 0 < ( n +2n − n) < 1, then
2
2
√ √
( n +2n + n) =4n +4n − ( n +2n − n) ∈ (4n +4n − 1, 4n +4n), thus the integer
2
2
2
2
2
2
2
√
part of ( n +2n + n) is 4n +4n − 1.
2
2
2
.
Download free eBooks at bookboon.com Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
Click on the ad to read more
31
31

