Page 31 - Elementary Algebra Exercise Book I
P. 31

ELEMENTARY ALGEBRA EXERCISE BOOK I                                           reAl numBers




               Solution 2: Obviously  S = x + y > 0 (since  x, y  cannot be both zero due to
                                            2
                                                 2
                                              √             √
                  2
                              2
               4x − 5xy +4y =5). Let  x =       S cos θ, y =  S sin θ , and substitute into
               4x − 5xy +4y =5:
                  2
                               2
                                                              5                      8S − 10
                     2                        2                                             . Since
               4S cos θ − 5S cos θ sin θ +4S sin θ =5 ⇒ 4S −   sin 2θ =5 ⇒ sin 2θ =
                                                              2                        5S
                                                       8S − 10       10        10
                                    8S − 10                                      .
                | sin 2θ|≤ 1, then           ≤ 1 ⇒−1 ≤         ≤ 1 ⇒    ≤ S ≤
                                     5S                   5S         13        3

                                                                                √
               1.83      For a positive integer  n , find the integer part of  ( n +2n + n) .
                                                                                              2
                                                                                   2
               Solution: For a positive integer  n , we have
                                                                       √
                                                                          2 √
                                    2
                                                           2
                       2
                 2
               n <n +2n<n +2n +1 = (n + 1) ⇒ n<                          n +2n<n +1 ⇒ 0 <
                     2
                                        2
                                                               2
                           2
                                                                              2
            √      n <n +2n<n +2n +1 = (n + 1) ⇒ n<                          n +2n<n +1 ⇒ 0 <
               2 √
              n +2n − n< 1                    √  2           2      √   2          2
                  n +2n − n< 1 . Let  x =( n +2n + n) ,y =( n +2n − n) , then
                   2
                         √                   √                                       √
                                        2
                                                                  2
                                                            2
                                                2
                                                                                         2
                            2
               x + y =( n +2n + n) +( n +2n − n) =4n +4n . Since  0 <                  n +2n − n< 1,
                          √
               then  0 < ( n +2n − n) < 1, then
                                        2
                             2
                √                             √
               ( n +2n + n) =4n +4n − ( n +2n − n) ∈ (4n +4n − 1, 4n +4n), thus the  integer
                                                            2
                                                                   2
                                     2
                              2
                                                                                 2
                   2
                                                 2
                        √
               part of  ( n +2n + n)  is  4n +4n − 1.
                                              2
                                       2
                           2















                                                                                                             .



                                            Download free eBooks at bookboon.com  Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                                                Click on the ad to read more
                                                            31
                                                            31
   26   27   28   29   30   31   32   33   34   35   36