Page 32 - Elementary Algebra Exercise Book I
P. 32

ELEMENTARY ALGEBRA EXERCISE BOOK I                                           reAl numBers




               1.84     The positive real numbers  p, q  satisfy  p + q =7pq  and make the polynomial
                                                                        2
                                                                   2
               xy + px + qy +1 of  x, y  be factored into a product of two first-order polynomials, find
               the values of  p, q .

                                                                                         √
               Solution:  p> 0,q > 0,p + q =7pq ⇒ p +2pq + q =9pq ⇒ p + q =3 pq . Since the
                                                         2
                                             2
                                        2
                                                                    2
                 polynomial  xy + px + qy +1 can be factored into a product of two first-order
               polynomials, we have  xy + px + qy +1 = (ax + b)(cy + d)= acxy + adx + bcy + bd .
                                                                                                                                       √
                                                                                          2
                                                                                     2
                                                                       p> 0,q > 0,p + q =7pq ⇒ p +2pq + q =9pq ⇒ p + q =3 pq
               Make the corresponding  coefficients equal:  ac =1, bd =1, ad = p, bc = q , thus        2          2
                                     √                  √         √             √          √
               = abcd =1,p + q =3 pq =3 ⇒ p =         3+ 5  ,q =  3− 5   or  p  =  3− 5 ,q =  3+ 5 .
                                                        2         2             2         2
               1.85     The positive integers  a, b, c  satisfy  a + b + c +3 < ab +3b +2c , find the
                                                                           2
                                                                 2
                                                                      2
               values of  a, b, c .
               Solution:  a, b, c  are positive integers, thus  a + b + c +3 and  ab +3b +2c  are both
                                                                     2
                                                            2
                                                                 2
               integers, then  a, b, c
                                                                                                           2  + b + c +3 < ab +3b +2c ⇒ a + b + c +4 ≤ ab +3b +2c ⇒ a − ab +               b 2  +
                                                                                                                                                        2
                                                                                                                                                                                  2
                                                                                                                                               2
                                                                                                                     2
                                                                                                                2
                                                                                                                                                   2
               2    2    2                         2    2   2                         2        b 2
                 + b + c +3 < ab +3b +2c ⇒ a + b + c +4 ≤ ab +3b +2c ⇒ a − ab +                 4  + 2   2                                                                                  4
                                                      2
                                                                                          2
                                                                                                      b
                                                           2
                                                                2
                        2
                   2
                             2
                                                                                                                                                   3
                                                                                                                                                                     2
                                                                                                                                                          2
                                                                                                                       2
                                                                                                                                                                                  b
                                                                                                                                             b 2
                    + b + c +3 < ab +3b +2c ⇒ a + b + c +4 ≤ ab +3b +2c ⇒ a − ab + 2
                                                                                                 b
                                                                                      b 2
                                                                                                   4
            3b 2  −3b+3+ c −2c +1 ≤ 0 ⇒ (a− ) + (b−2) +(c −1) ≤ 0 ⇒ a− =0,b−2=+                      +  3b 4  −3b+3+ c −2c +1 ≤ 0 ⇒ (a− ) + (b−2) +(c −1) ≤ 0 ⇒ a− =0,b−2=
                                                               2 2
                 2
                           2 2
                                                       3 2
                      2
                                                 b 2 2
                 2 + b + c +3 < ab +3b +2c ⇒ a + b + c +4 ≤ ab +3b +2c ⇒ a − ab +
                                                                         2
                                                                                                                                             2
                                                                                                                                                   4
                                                                                                                                                                                  2
                                                           3
                                                     b
                                                                                          b
                                                                                                  4
                              2
                                                       4 2
                                                                  2
                                                                            2
             4  2 3b  −3b+3+ c −2c +1 ≤ 0 ⇒ (a− ) + (b−2) +(c −1) ≤ 0 ⇒ a− =0,b−2= 0,c − 1 =0 ⇒ a =1,b =2,c =1
                                                                                      2
                                                 2
                                                         3
                                                                                        b
                                                     2 2
                                                           4
              3b
                            2
                                                                                          2
                4
                                                                          2
                                                   b
                                                                2
            0,c − 1 =0 ⇒ a =1,b =2,c =1 (a− ) + (b−2) +(c −1) ≤ 0 ⇒ a− =0,b−2=
                 −3b+3+ c −2c +1 ≤ 0 ⇒
               0,c − 1 =0 ⇒ a =1,b =2,c =1
                                                         4
               4
                                                   2
                                                                                        2
              0,c − 1 =0 ⇒ a =1,b =2,c =1.
               1.86     The positive integers m, n  satisfy (11111 + m)(11111 − n) = 123456789, show
               m − n  is a multiple of 4.
               Proof: Since 123456789 is an odd number, then  11111 + m  and  11111 − n  are odd
               numbers, then  m, n  are both even numbers.
               (11111 + m)(11111 −n) = 123456789 ⇔ 11111 ×11111 −11111n+ 11111m−mn =
                   (11111 + m)(11111 −n) = 123456789 ⇔ 11111 ×11111 −11111n+ 11111m−mn =
            123456789 ⇔ 11111(m − n) = mn + 2468
               123456789 ⇔ 11111(m − n) = mn + 2468. Since  mn  is a multiple of 4 and
               2468 = 4 × 617 is also a multiple of 4, then  11111(m − n) is a multiple of 4. In
               addition, since 11111 and 4 are coprime, then  m − n  is a multiple of 4.
                                                                                   x    y    z
               1.87       The nonzero real numbers  a,b,c,x,y,z  satisfy              =    =   , evaluate
                xyz(a + b)(b + c)(c + a)                                            a    b   c
                                       .
               abc(x + y)(y + z)(z + x)
                                            Download free eBooks at bookboon.com
                                                            32
   27   28   29   30   31   32   33   34   35   36   37