Page 33 - Elementary Algebra Exercise Book I
P. 33

ELEMENTARY ALGEBRA EXERCISE BOOK I                                           reAl numBers



                             x    y    z         xyz
                                                         3
               Solution: Let    =   =    = t ⇒       = t , and                                        x + y    y + z   z + x        (x + y)(y + z)(z + x)         (a + b)(b + c)(c + a)
                             a    b    c         abc                                                        =       =        = t ⇒                       = t ⇒                         =
                                                                                                                                                             3
                                                                                                      a + b    b + c   c + a        (a + b)(b + c)(c + a)        (x + y)(y + z)(z + x)
               x + y    y + z   z + x        (x + y)(y + z)(z + x)         (a + b)(b + c)(c + a)
                                                                      3
                     =        =       = t ⇒                        = t ⇒                        = 1
                a + b   b + c    c + a        (a + b)(b + c)(c + a)        (x + y)(y + z)(z + x)   3  .
            1                                                                                      t
            t 3
               Hence,
                                          xyz(a + b)(b + c)(c + a)      1
                                                                    = t 3  =1.
                                          abc(x + y)(y + z)(z + x)      t 3
                                                                                          1    1   1
               1.88      Given  2007x = 2009y = 2011z ,x > 0,y > 0,z > 0, and               +    +   =1,
                                                    2
                                                              2
                                          2
                                                                                          x    y   z
                      √                           √         √         √
               show     2007x + 2009y + 2011z =     2007 +    2009 +    2011.
               Proof: Let  2007x = 2009y = 2011z = k  (k> 0),  then
                                          2
                                                    2
                                2
                                                                1    1   1
               2007x = k/x, 2009y = k/y, 2011z = k/z . Since      +    +   =1, then
                                                                x    y   z
                                                                                            √
                  2007x + 2009y + 2011z =      k/x + k/y + k/z =     k(1/x +1/y +1/z) =       k.
               On the other hand,
                                                             √         √         √         √
                           2              2             2       √         √         √          √
               2007 = k/x , 2009 = k/y , 2011 = k/z ⇒          2007 +    2009 +    2011 =    k/x +
                             √ 2
                                                           2
                                             2
                    √
           √      2007 = k/x , 2009 = k/y , 2011 = k/z ⇒          2007 +    2009 +    2011 =     k/x +
               √
                       √
             k/y +    k/z =    k √
                 k/y +   k/z =    k . Hence the aimed equality holds.
               1.89    If  x,y,z  are nonzero real numbers, and  x + y + z = xyz, x = yz , show x ≥ 3.
                                                                                                    2
                                                                                    2
               Proof:  x + y + z = xyz ⇔ y + z = xyz − x = x − x  since  yz = x . Then we can treat
                                                                                   2
                                                               3
                y, z  as two roots of the quadratic equation  u − (x − x)u + x =0.  . Since x,y,z  are real
                                                                           2
                                                          2
                                                                3
               numbers, then
                        3     2      2           6      4      2           2  4      2
                Δ=(x − x) − 4x ≥ 0 ⇒ x − 2x − 3x ≥ 0 ⇒ x (x − 2x − 3) ≥ 0 ⇒
                                                                                        2
                                                                  2
                                                                              2
                                                     6
                                                                                 4
                                  2
                                        2
                           3
                                                           4
                   Δ=(x − x) − 4x ≥ 0 ⇒ x − 2x − 3x ≥ 0 ⇒ x (x − 2x − 3) ≥ 0 ⇒
                 2
                         2
             2
            x (x + 1)(x − 3) ≥ 0
               x (x + 1)(x − 3) ≥ 0. Since x  =0, then x > 0,x +1 > 0, thus x − 3 ≥ 3 0, i.e. x ≥ 3.
                                                           2
                                                                                    2
                                                                   2
                                                                                                   2
                 2
                    2
                            2
               1.90      Given  a, b, c  are nonzero real numbers, and  a + b + c =1 ,
                                                                                              2
                                                                                                   2
                                                                                         2
                  1
                                         1
                      1
                                  1
                                             1
               a + b + c )+ b( + )+ c( + ) + 3 = 0, find all possible values of  a + b + c .
                             1
                 ( +
                  b   c      c    a      a   b
               Solution:
                                         1
                  1
                                 1
                             1
                      1
                                             1
                 ( +
               a + b + c )+ b( + )+ c( + ) +3 = 0 ⇒         ac+ab  +  ab+bc  +  bc+ca  +3 = 0 ⇒ (a + b +c)
                  b   c      c   a       a   b               bc      ac      ab
                                             1
                      1
                             1
                  1
                                         1
                                 1
                 ( + )+ b( + )+ c( + ) +3
             c)(ab + bc + ca)=0 ⇒ a + b + c =0 = 0 ⇒        ac+ab  +  ab+bc  +  bc+ca  +3 = 0 ⇒ (a + b +
                                                                             ab
                      c
                  b
                                                             bc
                                 a
                                             b
                                         a
                             c
                                                                     ac
             c)(ab + bc + ca)=0 ⇒ a + b + c =0 or  ab + bc + ca =0. For the case  ab + bc + ca =0,
               since a + b + c =(a + b + c) − 2(ab + bc + ca) =1, then
                      2
                                2
                           2
                                               2
               (a + b + c) =1 ⇒ a + b + c = ±1 . Hence,  a + b + c  can be -1, 0, or 1.
                          2
                                            Download free eBooks at bookboon.com
                                                            33
   28   29   30   31   32   33   34   35   36   37   38