Page 39 - Elementary Algebra Exercise Book I
P. 39

ELEMENTARY ALGEBRA EXERCISE BOOK I                                           reAl numBers



                                                                            1
               1.103      If the real numbers a, b, c, d are all distinct, and a, b, c, db +  1  = c +  1  = d +  1  = x
                                                                          + =
                                                                            b        c       d        a
               find the value of  x .
                                                                   1
                            1
                                                                                               1
                                                                                 1
                          +
                                                                               +
                                                                 +
               Solution: a, b, c, d = b +  1  = c +  1  = d +  1  = x ⇒  a, b, c, d = x  (i),  a, b, c, d= x  (ii),  b, c, d + = x  (iii),
                                                                                       a,
                             b       c       d        a            b             c             d
                                                                    a,
                   1                       =   1  , substitute it into (ii):  b, c, d =  x−a  , substitute it into (iii):
                                                                             2
         a, b, c, d + = x  (iv). (i) implies  a, b, c, d x−a                x −ax−1
                   a
                  x − a       1                 3            2
                           +    = x , that is,  dx − (ad + 1)x − (2d − a)x + ad +1 = 0 (v).
                 2
               x − ax − 1     d
               (iv) implies  ad +1 = ax , substitute it into (v):
                                                                                        3
                                                          3
                        3
               dx − ax − 2dx + ax + ax =0 ⇒ (d − a)x − (d − a)2x =0 ⇒ (d − a)(x − 2x)=0.
                  3
                                                                          x−a
                                                               a,
                                        3
               Since  d − a �=0, then  x − 2x =0. If  x =0, then  b, c, d   =  x −ax−1  ⇒ a = c , a
                                                                         2
                                                                     √
               contradiction. Hence,  x − 2= 0 ⇒ x =2 ⇒ x = ± 2.
                                       2
                                                      2
               1.104      Consider a group of natural numbers  a 1 ,a 2 , ··· ,a n , in which there are  K i
               numbers equal to i  (i =1, 2, ··· ,m ). Let S = a 1 + a 2 + ··· + a n ,S j = K 1 + K 2 + ··· + K j
               (1 ≤ j ≤ m ). Show  S 1 + S 2 + ··· + S m =(m + 1)S m − S .
               Proof:    S = a 1 + a 2 + ··· + a n = K 1 · 1+ K 2 · 2+ ··· + K n · m =(K 1 + K 2 + ··· + K m )+.
                     (K 2 + K 3 + ··· + K m )+ ··· + K m = S m + (S m − S 1 )+ ··· + (S m − S m−1 )+ S m − S m =
                     (m + 1)S m − (S 1 + S 2 + ··· + S m )
               Hence,  S 1 + S 2 + ··· + S m =(m + 1)S m − S.
               1.105     There are ten distinct rational numbers, and the sum of any nine of them is
               an irreducible proper fraction whose denominator is 22, find the sum of these ten rational
               numbers.



               Solution: Let these ten distinct rational numbers be  a 1 <a 2 < ··· <a 1 0 . We  have
                                             m
               (a 1 + a 2 + ··· + a 10 ) − a k =  , where  k =1, 2, ··· , 10 .  m  is an odd  number and
                                             22
               1 ≤ m ≤ 21,m �= 11 .  Additionally  because  a 1 ,a 2 , ··· ,a 10   are  all  distinct,  then
                                                           1+3 +5+7+9+13 +15+17 +19+21
               10(a 1 +a 2 +···+a 10 )−(a 1 +a 2 +···+a 10 ) =                                         .
                                                                               22
               Hence,  a 1 + a 2 + ··· + a 10 =5/9.


               1.106     Given  a + b + c = abc  =0, evaluate
                     2
                                                                    2
                                         2
                                                            2
                             2
                                                 2
               (1 − b )(1 − c )    (1 − a )(1 − c )   (1 − a )(1 − b ) .
                                +                  +
                      bc                 ac                  ab
                           +b +
               Solution:  a, b, c, d c = abc �=0 ⇒ ab =  a+b+c  ⇒  a+b  = ab − 1 .
                                                                c
                                                        c
                         b + c           a + c
               Similarly,      = bc − 1,       = ac − 1 . We have
                           a               b


                                            Download free eBooks at bookboon.com
                                                            39
   34   35   36   37   38   39   40   41   42   43   44