Page 41 - Elementary Algebra Exercise Book I
P. 41

ELEMENTARY ALGEBRA EXERCISE BOOK I                                           reAl numBers




               If  a, b, c  are not divisible by 5, then the last digits of  a ,b ,c  can only be 1,4,6,9. Thus
                                                                        2
                                                                           2
                                                                              2
               the last digits of  a − b ,b − c ,c − a  should have  0 or  ±5, that is, at least one of
                                           2
                                        2
                                   2
                                                2
                                                   2
                                                        2
               a − b ,b − c ,c − a  is divisible by 5. Since 2 and 5 are coprime, thus at least one of
                                2
                 2
                                     2
                             2
                        2
                     2

               a b − ab = ab(a − b ),b c − bc = bc(b − c ),c a − ca = ca(c − a )a b − ab = ab(a − b ),b c − bc = bc(b − c ),c a − ca = ca(c − a ) is divisible by 10.
                        3 3
                                         3 3
                 3 3
                                     2 2
                                2 2
                                                                                     2 2
                                                                                2 2
                                                3 3
                                                             2 2
                                                        2 2
                                                                 3 3
                                                                        3 3
               1.108      Let  a, b, c  are positive integers and follow a geometric sequence, and  b − a
               is a perfect square,  log a + log b + log c =6, find the value of  a + b + c .
                                                       6
                                      6
                                              6
               Solution:  log a + log b + log c =6 ⇒ log abc =6 ⇒ abc =6 . In addition,  b = ac , then
                                                                              6
                                                                                             2
                            6
                                            6
                                    6
                                                          6
               b =6 = 36, ac = 36 . In order to make 36 − a  a perfect square, a can only be 11,27,32,35, and
                     2
                                    2
               a is a divisor of 36 , thus a = 27, then c = 48. Therefore, a + b + c = 27 + 36 + 48 = 111.
                                 2
               1.109      The real numbers  a, b, c, d  satisfy  a + b = c + d, a + b = c + d , show
                                                                                   3
                                                                                        3
                                                                                             3
                                                                                                  3
               a 2011  + b 2011  = c 2011  + d 2011 .
               Proof: If  a + b = c + d =0, then the conclusion is obviously true.
               If  a + b = c + d  =0, then
                                                                      2
                  3
                                                                                2
                                              2
                                                                                       2
                      3
                                                                                                 2
                           3
                                                        2
                                 3
                a + b = c + d ⇒ (a + b)(a − ab + b )=(c + d)(c − cd + d ) ⇒ a − ab + b =            2
                                                 2
                                                           2
                                                                         2
                              3
                                                                                          2
                         3
                    3
                                   3
                                                                                   2
                         2 b = c + d ⇒ (a + b)(a − ab + b )=(c + d)(c − cd + d ) ⇒ a − ab + b =
                                                                                                    2
                                                 2
                                                                         2
                                                         2 2
                                                                                   2
                                                                                          2 2
                    3
                                   3
                   a + 3
                              3
                                      2
              2
             c − cd + d ⇒ (a + b) − 3ab =(c + d) − 3cd ⇒ ab = cd ⇒ (a + b) − 4ab = b =
                   a + b = c + d ⇒ (a + b)(a − ab + b )=(c + d)(c − cd + d ) ⇒ a − ab +
                                                            2
                                        2
                           2
                                                                                             2
                    2cd + d ⇒ (a + b) − 3ab =(c + d) − 3cd ⇒ ab = cd ⇒ (a + b) − 4ab =
                2
               c −
                           2
                                                            2
                                      2
                2
                                                 2
                                        2
                                                                                             2
               c − cd + d ⇒ (a + b) − 3ab =(c + d) − 3cd
             (c + d) − 4cd ⇒ (a − b) =(c − d) ⇒ a − b = ±(c − d) ⇒ ab = cd ⇒ (a + b) − 4ab =
                      2
                                                   2
                                        2
               (c + d) − 4cd ⇒ (a − b) =(c − d) ⇒ a − b = ±(c − d)
               (c + d) − 4cd ⇒ (a − b) =(c − d) ⇒ a − b = ±(c − d). Hence,
                                        2
                                                   2
                      2
                                                  a − b = c − d (i)
                                                  a + b = c + d (ii)
               or
                                                  a − b = d − c (iii)
                                                  a + b = c + d (iv)
               (i)+(ii):  a = c ; (i)-(ii):  b = d .
               (iii)+(iv):  a = d ; (iii)-(iv):  b = c .
               For either case, we have  a 2011  + b 2011  = c 2011  + d 2011 .
               1.110        The real numbers  a, b, c, d  satisfy  a + b + c + d =0 ,  show
               a + b + c + d = 3(abc + bcd + cda + dab).
                          3
                 3
                     3
                               3
                                            Download free eBooks at bookboon.com
                                                            41
   36   37   38   39   40   41   42   43   44   45   46