Page 36 - Elementary Algebra Exercise Book I
P. 36

ELEMENTARY ALGEBRA EXERCISE BOOK I                                           reAl numBers



                                                                                              2
                                                                                    2
                                                                                         2
               1.96      The real numbers  x,y,z  satisfy  x + y + z =3 (i),  x + y + z = 29 (ii),
                there are 2000 integers satisfying the inequality. If x< 0, then the inequality becomes
                 3 (2000 − x)+ (−x) ≤ 9999 ⇔−3999.5 ≤ x< 0.
                                                            4There are additionally 3999 integers
                      3
               x + y + z = 45 (iii). Evaluate  xyz  and  x + y + z .
                           3
                                                                 4
                                                                      4
                satisfying the inequality. Hence, totally there are 4000 + 2000 + 3999 = 9999 integers
                            2 inequality.
                satisfying the
               Solution: (i) -(ii):  xy + yz + zx = −10. Since
                 3
                       3
                                                                                   2
                            3
                                                                    3
                                                              3
                                          3
                                                                          2
                                                         2
                                                2
                x + y + z − 3xyz = x +3x y +3xy + y + z − 3x y − 3xy − 3xyz =(x +
                          3
                                                                 3
                                                                             2
                    3
                                                                      3
                                                                                      2
                                                            2
                                                   2
                               3
                                             3
                    3 ⋆⋆⋆
                    3 x + y + z − 3xyz = x +3x y +3xy + y + z − 3x y − 3xy − 3xyz =(x +
                                                                                    2
                                                              2
                                                                           2
               3
                                                                              2 2
                               3 real numbers x, y, z satisfy x + y + z = 3 (i), x + y + z = 29 (ii),
                             The
                1.96
             y) + z − 3xy(x + y + z) =(x + y + z)[(x + y) − (x + y)z + z ] − 3xy(x + y + z)=
                                             3
                                                                                      2
                                                   2
                                                                      3
                                                                             2
                          3
                                                                 3
                                                            2
                   x + y + z − 3xyz = x +3x y +3xy + y + z − 3x y − 3xy − 3xyz =(x +
                          2 3xy(x + y + z) =(x + y + z)[(x + y) − (x + y)z + z ] − 3xy(x + y + z)=
                       3
                  3
                          3
                     3
                 3
               y) + z − z = 45
                x + y +
                               2(iii). Evaluate xyz and x + y + z .
                                    2
             (x + y + z)(x + y + z − xy − yz − zx)     4   4    4 2 2            2 2
                       3
                  3
               y) + z − 3xy(x + y + z) =(x + y + z)[(x + y) − (x + y)z + z ] − 3xy(x + y + z)=
                             2
                                  2
                                       2
               (x + y + z)(x + y + z − xy − yz − zx)
               (x + y + z)(x + y + z − xy − yz − zx) , then  45 − 3xyz = 3(29 + 10) ⇒ xyz = −24.
                             2
                                  2
                                       2
                           2
                                                             3
                                                                       3
                                                                                         2
                                                                  3
                                                                                   3
                Solution: (i) -(ii): xy + yz + zx = −10. Since x + y + z − 3xyz = x +3x y +
                                        2
                                                             3
                                                         3
                   2   3   3     2   2 3xy − 3xyz =(x + y) + z − 3xy(x + y + z) =(x + y + z)[(x +
                                                 2 2
                                                        2 2
                                                                2 2
               Since  (xy + yz + zx) = 100 ⇒ x y + y z + z x +2xyz(x + y + z) = 100, then
                3xy + y + z − 3x y −
                                                                2
                 2
                                2
                                                                        2
                                                                    2
                y) − (x + y)z + z ] − 3xy(x + y + z)= (x + y + z)(x + y + z − xy − yz − zx), then
                        2 2
                               2 2
                 2 2
                                                                       2
                                                                                         2 2
                                                                                  2 2
               x y + y z + z x = 100 − 2 · (−24) · 3 = 244.   yz + zx) = 100 ⇒ x y + y z +
                45 − 3xyz = 3(29 + 10) ⇒ xyz = −24. Since (xy +
                 2 2
                                                   2 2
                                                         2 2
                                                                2 2
                z x +2xyz(x + y + z) = 100, then x y + y z + z x = 100 − 2 · (−24) · 3 = 244.
                                                                   2 2
                                                                                    2
                                                            2 2
                                                   2 2
                                              2
                                                                           2 2
                                         2
                                   4
               Hence,  x + y + z =(x + y + z ) − 2(x y + y z + z x ) = 29 − 2 × 244 = 353.
                         4
                              4
                                4
                                                                            2
                                      2
                                                       2 2
                                                                    2 2
                        4
                                               2 2
                                           2
                            4
                                                              2 2
                Hence, x + y + z =(x + y + z ) − 2(x y + y z + z x ) = 29 − 2 × 244 = 353.
                              1       1
                                  +  1 1  1 1         1 1
                              = 1+
                                           2 + ··· +
                                      2 +
                1.97 ⋆   Let S =     2 +             2009 , find [S].
               1.97    Let  S min 1+  S max 3 + · ·· +  2 , find  [S].
                                    2 2  3 2       2009 2
                                            1
                                                                                              1
                                                                             1
                                                        1
                                1
                                    1
                                         1
                                                              1 1
                                                                                     1
                                              + ··· +
                                         +
               Solution: 1 <S = 1+   2 1 2 2 1 2 + ··· +·+  1 1 2 2 < 1+  < 1+ + +  1  1 1  + +·· ·+  + ··· + 1 2008 × 2009  =
                                                       <
                                   + +
                                                                          + ··· +
                                           +
                                                                                              =
                                                          2 1+
                Solution: 1 <S
                                                                                            =
                   1 <S = 1+ = 1+
                                                                           2 × 3
                                            3
                                                                   1 × 2
                                                      2009
                                             2 ··
                                         2
                                                                     2 × 3 3
                                                  2009
                                 2
                                                                                  2008 × 2009
                                                                                2008 × 2009
                                                                    2 ×
                                                             1 ×
                                                 1
                                                                           2008
                                                                    1
                       1 1  1 1  1  1 1 2  1  2 3 1  3  1 1  2009  1  1 1 × 2 2  2008 =1 . Hence,  [S]=1.
                                                  1 1
                                                             1
                                                                    2008
                                                               =1
                         + +
                1+1
                                    −
                                 + ··· +
                                                    =2 −
                                             −
               1+1 − − 1+1 − − − 2  + + ··· +  + ··· + − 2008  − =2 −  =2 − =1  . Hence, [S] = 1.
                                                                  2009
                                  2
                                                                           2009
                                      3
                                                       2009
                       2 2  2 2  3 3    2008   2009       2009     2009
                                                2009
                                                                    2009
                                                            2009
                                         2008
                                   1       1
                                      + 1 1     1 1          1 1
                1.98 ⋆⋆⋆           = 1+ √ + √ + ··· + √          , find  [S].
                             Let S =
               1.98      Let  S min 1+ √ + √ + ·· · + √     994009  , find [S].
                                         S max
                                           2
                                                3
                                          2     3          994009
                                                              1          1          1
                Solution: Let k be a positive integer, we have √  √ < √ < √         √      ⇔
                                                          k +1+    k   2 k      k +   k − 1
                √        √      1     √    √                     √         1       √    √
                 k +1 −   k< √ <        k −  k − 1. Thus we have  2 − 1 < √ < 1,     3 −  2 <
                               2 k                                        2 1
                 1     √           √         √               1       √          √
                 √ <     2 − 1, ·· · ,  994010 −  994009 < √       <   994009 −   994008. Add
                2 2                                      2 994009
                              √             1      1     1            1        √         1
                them up to get  994010 − 1 < (1 + √ + √ + ·· · + √         ) <  994009 −   ⇒
                                            2       2     3          994009              2
                         1           1           √
                997 − 1 < S< 997 −     ⇒ 1992 < 2 994010 − 2 <S < 1993 ⇒ [S] = 1992.
                         2           2
               1.99      Given  x,y,z,a,b,c  are distinct rewal numbers, and
                                               1        1       1         1
                                                   +        +         =    ,
                                             x + a    y + a   z + a       a
                                                1       1        1        1
                                                    +       +         =    ,
                                              x + b   y + b    z + b      b
                                                1       1        1        1
                                                    +       +         =    ,
                                              x + c   y + c    z + c      c
                         1   1    1
               Evaluate    +   + .
                         a   b    c
                                            Download free eBooks at bookboon.com
                                                            36
   31   32   33   34   35   36   37   38   39   40   41