Page 42 - Elementary Algebra Exercise Book I
P. 42

ELEMENTARY ALGEBRA EXERCISE BOOK I                                           reAl numBers




                                                                                3
                                                                                              2
                                                                                     3
                                                                       3
                                                                                                     2
                                                                                         3
                          a+b+c+d =0 ⇒ a+b = −(c+d) ⇒ 0 =(a+b) +(c+d) = a +b +3a b+3ab +
                       3   3     2      2    3   3   3    3       2     2   2      2     3   3   3   3
                      c +d +3c d+3cd ⇒ a +b +c +d = −3(a b+ab +c d+cd ) ⇒ a +b +c +d −
                                                   2
                                                                                                    2
                                                             2
                                                                   2
                                                         2
                      3(abc+bcd+cda+dab) = −3(a b+ab +c d+cd )−3(abc+bcd+cda+dab) = −3(a b+
                                                                                              2
                                                               2
                                                                     2
                                  2
                        2
                            2
                                                                                                   2
                      ab +c d+cd +abc+bcd+cda+dab) = −3[(a b+ab +abc+abd)+(acd+bcd+c d+cd )] =
               Proof:  −3[ab(a+b+c+d)+cd(a+b+c+d)] = 0 ⇒ a +b +c +d = 3(abc+bcd+cda+dab) .
                                                                  3
                                                                              3
                                                                          3
                                                                      3
               1.111      Consider a  2n × 2n  square grid chessboard, each grid can only have one
               piece, and there are 3n  grids having pieces, show we can always find n  rows and n  columns
               such that these  3n  pieces are within these  n  rows or these  n  columns.
               Proof: Denote the number of pieces in each row or column as  p 1 ,p 2 , ··· ,p n ,p n+1 , ··· ,p 2n  with
               the order  p 1 ≥ p 2 ≥ ··· ≥ p n ≥ p n+1 ≥ ··· ≥ p 2n . The given condition implies that
                p 1 + p 2 + ··· + p n + p n+1 + ··· + p 2n =3n  (i).  If  p 1 + p 2 + ··· + p n ≤ 2n − 1  (ii),  then  at
               least one of  p 1 ,p 2 , ··· ,p n  is not greater than 1. (i)-(ii):  p n+1 + ··· + p 2n ≥ n +1, then at least one
               of p n+1 , ··· ,p 2n  is greater than 1, a contradiction. Hence, we have p 1 + p 2 + ··· + p n ≥ 2n. Hence,
               we choose not less than 2n pieces from the n rows and then choose the remaining pieces from the n
               columns to include all 3n pieces.
               1.112       Find a positive number such that its fractional part, its integer part, and
               itself are geometric.

               Solution: Denote the number as  x> 0, its integer part  [x], and its fractional part

               x − [x]. The given condition implies that  x(x − [x]) =[x] ⇒ x − [x]x − [x] =0, where
                                                                              2
                                                                         2
                                                                                           2
                                                               √
                                                           =
               [x] > 0, 0 <x − [x] < 1. The solution is  x> 0 1+ 5 [x]. Since  0 <x − [x] < 1,  then
                                                               2
                       √                         √                        √
                   1+    5                   1+   5                   1+    5   .
               0 <        [x] < 1 ⇒ 0 < [x] <       < 2 ⇒ [x]=1,x =          [x] > 0, 0 <x − [x] < 1
                      2                         2                        2
               1.113       Consider a sequence  a 1 ,a 2 ,a 3 , ··· ,a n  satisfying  a 1 + a 2 + ··· + a n = n
                                                                                                         3
                                                      1         1               1
               for any positive integer  n , evaluate      +        + ··· +          .
                                                    a 2 − 1  a 3 − 1         a 100 − 1
               Solution: When  n ≥ 2, we have  a 1 + a 2 + ··· + a n = n  (i),
                                                                       3

               a 1 + a 2 + ··· + a n−1 =(n − 1)  (ii). (i)-(ii):  a n = n − (n − 1) =3n − 3n +1. Thus
                                                                              3
                                                                   3
                                              3
                                                                                     2

                  1        1           1      1     1    1   ,  n =1, 2, 3, ··· , 100.
                      =          =          =          −
                          2
               a n − 1  3n − 3n    3n(n − 1)  3   n − 1  n
                                                                         1 1
                                                                                1
                                                                                          1 1
                                                                   1
               Hence,       1 1  +   1    + ··· +   1 1   = 1  1  (1 − )+ ( − )+ ··· + (        −  1  )=
                                                                                         1
                                             1
                     1
                                                                                 1 1
                                                                1 1
                                                                      1
                         + a 2 − 1 + ··· +        a 100 − 1 − )+ ( − )+ ··· + (       −   3 99    100
                                                                                            )=
                                                  =
                                                      (1
                                                                   2
                                                                         3 2
                                                             3
                                                                                3
                                   a 3 − 1
                  a 2 − 1  a 3 − 1  1    99     33  3      2    3 2   3          3 99   100
                                          a 100 − 1
                       1
                              1
                                 99
               1      1 (1 − 1  ) =   × 33 .  =
                 (1 −  3  ) =  100  3 =  100   100
                              ×
               3     100     3   100   100
                                            Download free eBooks at bookboon.com
                                                            42
   37   38   39   40   41   42   43   44   45   46   47