Page 14 - Elementary Algebra Exercise Book I
P. 14

ELEMENTARY ALGEBRA EXERCISE BOOK I                                           reAl numBers



                       y + z
               Proof:          = m ⇒ y + z = m(ay + bz) ⇒ (1 − am)y =(bm − 1)z
                      ay + bz


               (i). Similarly we can obtain  (1 − am)z =(bm − 1)x


               (ii).  (1 − am)x =(bm − 1)y , (iii).  (1 − am)x =(bm − 1)y z
                                                   (1 − am)x
                                                            y =(bm − 1)y
               (i) × (ii) × (iii) ⇒ (1 − am) xyz =(bm − 1) xyz , which together with  xyz  =0 leads  to
                                           3
                                                            3
                                                                       2
                         3
                                      3
               (1 − am) =(bm − 1) ⇒ 1 − am = bm − 1 ⇒ m =                   when  a + b  =0.
                                                                     a + b
               1.29 Given  a + b =2, find the value of  a +6ab + b .
                                                          3
                                                                     3
                                                2
                                                                                2
                                    3
                                                                       2
                                                         2
                                                                                                       2
                                                                                            2
                          3
               Solution: a +6ab+b =(a+b)(a −ab+b )+6ab = 2(a −ab+b )+6ab =2a +4ab+2b =
                              3
                                                                           2
                    3
                                                    2
                                                                                        2
                                                                                                    2
                                           2
                                                                  2
                   a +6ab+   2 b =(a+b)(a −ab+b )+6ab = 2(a −ab+b )+6ab =2a +4ab+2b =
                                      2
                     2(a + b) =2 × 2 =8
                                 2
                        2
               2(a + b) =2 × 2 =8
                                                                                    2
                             2
                                                                                                2
               1.30 Given  x + xy =3 (i),  xy + y = −2 (ii), find the value of  2x − xy − 3y .
                                                   2
               Solution:  (i) × 2 − (ii) × 3 ⇒ 2x − xy − 3y = 12.
                                                            2
                                                2
                                                           ab      1   bc     1   ca     1
               1.31    If the real numbers  a, b, c  satisfy    = ,        = ,         = , find the value
                                                          a + b    3 b + c    4 c + a    5
                       abc
               of              .
                  ab + bc + ca
                           ab     1     a + b        1    1                                    1    1
               Solution:        =   ⇒         =3 ⇒     +    =3 (i). Similarly, we can obtain     +    =4
                          a + b   3      ab          a    b                                     b   c
                    1   1                           1    1   1              abc            1        1
               (ii),   +   =5 (iii). (i)+(ii)+(iii)  ⇒  +  +   =6 ⇒                 =             = .
                                                                                           1
                    c   a                           a    b   c         ab + bc + ca    1  + +   1   6
                                                                                       a   b    c
               1.32    Given  a + b + c + d =4abcd , show  a = b = c = d .
                                          4
                                     4
                                               4
                                4
                       4    4    4    4                    4     2 2    4      4     2 2    4        2 2
               Proof: a + b + c + d − 4abcd =0 ⇒ (a − 2a b + b )+(c − 2c d + d ) + (2a b −
                                                              2 2
                                                                                                  2 2
                         4
                                                        4
                    4
                                   4
                              4
                                                                                  2 2
                                                                                          4
                                                                     4
                                                                            4
                   a + b + c
                             2 2+ d − 4abcd =0 ⇒ (a − 2a b + b )+(c − 2c d + d ) +
                                                            2 2
                                                                            2
                                           2
                                               2 2
                                                       2
                                                                                      2
                                                                                           2
                                                                                                   2
                                                                                              2(2a b −
                  4abcd + 2c d )= 0 ⇒ (a − b ) + (c − d ) + 2(ab − cd) =0 ⇒ a = b ,c = d , ab =
                                                                            4
                              4
                    4
                                   4
                                                                                  2 2
                                                                     4
                                                              2 2
                                                        4
                                                                                                  2 2
                                                                                          4
                         4
                   a + b + c + d − 4abcd =0 ⇒ (a − 2a b + b )+(c − 2c d + d ) + (2a b −
                                                                                                 2
                                                                                        2
                                                                                   2
                                                                                           2
                          2 2
                                        2
                                                         2 2
                                             2 2
                                                    2
                                                                         2
               4abcd + 2c d )= 0 ⇒ (a − b ) + (c − d ) + 2(ab − cd) =0 ⇒ a = b ,c = d , ab =
                  cd ⇒ a = b = c = d
                                        2
                                                                                                 2
                          2 2
                                                                                           2
                                                         2 2
                                                    2
                                                                         2
                                                                                   2
                                             2 2
                                                                                        2
               4abcd + 2c d )= 0 ⇒ (a − b ) + (c − d ) + 2(ab − cd) =0 ⇒ a = b ,c = d , ab =
               cd ⇒ a = b = c = d
               cd ⇒ a = b = c = d.
               1.33 Consider two real numbers x, y, find the minimum value of 5x − 6xy +2y +2x − 2y +3
                                                                              2
                                                                                           2
               and the associated values of  x, y .
                                            Download free eBooks at bookboon.com
                                                            14
   9   10   11   12   13   14   15   16   17   18   19