Page 561 - Elementary_Linear_Algebra_with_Applications_Anton__9_edition
P. 561

(a) Find the eigenvalues of A.

     (b) For each eigenvalue , find the rank of the matrix     .

       (c) Is A diagonalizable? Justify your conclusion.
In Exercises 3–7 use the method of Exercise 2 to determine whether the matrix is diagonalizable.
3.

4.

5.

6.

7.

In Exercises 8–11 find a matrix P that diagonalizes A, and determine  .
8.

9.

10.

11.

In Exercises 12–17 find the geometric and algebraic multiplicity of each eigenvalue, and determine whether A is diagonalizable.

If so, find a matrix P that diagonalizes A, and determine   .

12.
   556   557   558   559   560   561   562   563   564   565   566