Page 103 - C:\Users\trainee\AppData\Local\Temp\msoEAA3.tmp
P. 103

Fundamentals of Stress and Vibration
                [A Practical guide for aspiring Designers / Analysts]   1. Mathematics for Structural mechanics


                 Ї”‡ˆ‘”‡ǡ –Ї •Ž‘’‡ ‹• ‰‹˜‡ „›ǣ
                              ∆y
                 slope = lim        - - - - (1.1)
                        ∆x→0 ∆x

                The expression in equation (ͳǤͳ) is called the derivative of (y) with respect to (x)
                                      dy
                and is represented as:      , which is also used to find the slope of the curve at a given point.
                                      dx
                                                         dy      dy
                                                             −
                                                                                     2
                                                         dx      dx       d dy     d y
               Further, the rate of change of slope:     lim    2    1   =       =        - - - - (1.2)
                                                   ∆x→0       ∆x         dx dx     dx 2
                                                                dy
                is got by appying the concept of limit, to change in       , rather than (y).
                                                                dx



                 ‘–‡ǣ   Ї •Ž‘’‡ ‘ˆ –Ї †‹•–ƒ…‡ ˜• –‹‡ ‰”ƒ’Š ›‹‡Ž†• ˜‡Ž‘…‹–›ǡ ƒ† –Ї ”ƒ–‡ ‘ˆ …Šƒ‰‡ ‘ˆ •Ž‘’‡
                ›‹‡Ž†• ƒ……‡Ž‡”ƒ–‹‘Ǥ

                ͳǤͶǤͳ  –ƒ†ƒ”†  ‡”‹˜ƒ–‹˜‡•

                 ‘ŽŽ‘™‹‰ ƒ”‡ ƒ ˆ‡™ •–ƒ†ƒ”† †‡”‹˜ƒ–‹˜‡• …‘‘Ž› —•‡† ‹ –Ї ‡‰‹‡‡”‹‰ …‘–‡š–Ǥ

                     ˆȋšȌ          ˆ ǯȋšȌ                  ˆȋšȌ                     ˆ ǯȋšȌ
                                                             
                                                                                      -ͳ
                     •‹ š         …‘• š                    š                       š
                     …‘• š         -•‹ š                                            −2x

                                                          a − x                      2    2
                                                           2
                                                                2
                     –ƒ š         •‡…  š                                         2 a − x
                                      ʹ
                                                             š                         š
                     •‡… š       –ƒ 𠕇… š                ‡                        ‡
                                                                                       ƒš
                                                             ƒš
                    …‘•‡… š     -…‘– š …‘•‡… š              ‡                        ƒ‡
                     …‘– š        -…‘•‡… š                 Ž‘‰‡ š                     1
                                       ʹ
                                                                                      x
                                                                                 cos x
                                                          log sin x                     = cot x
                                                               e
                                                                                  sin x

                                                                             ′
                                                    f x  ∗ g x [Chain Rule]   f  x  ∗ g x     + g  x  ∗ f(x)
                                                                                         ′

                                                     g(x)                   g  x  ∗ f x  − f  x  ∗ g(x)
                                                                                        ′
                                                                             ′


                                                     f(x)  [Division Rule]          (f(x)) 2



                                QP No. SSC/Q4401, Version 1.0, NSQF Level 7, Compliant with Aero and Auto Industries,
                    Page 6
   98   99   100   101   102   103   104   105   106   107   108