Page 105 - C:\Users\trainee\AppData\Local\Temp\msoEAA3.tmp
P. 105

Fundamentals of Stress and Vibration
                [A Practical guide for aspiring Designers / Analysts]   1. Mathematics for Structural mechanics
                                                                            2
                 šƒ’Ž‡ ͳǣ ϐ‹† –Ї ƒš ‘” ‹ ˜ƒŽ—‡ ˆ‘” –Ї ˆ—…–‹‘    [y = 4x + 2x − 16]  - - - - (1.3)

                 ‘Ž—–‹‘ ͳǣ

                                                                       dy
                Differentiating  y , and equating the slope to zero, we get:    = 8x + 2 = 0
                                                                       dx
                                         2
                Therefore, we have   x = − = −0.25
                                         8


                 ‘™ǡ –‘ —†‡”•–ƒ† ‹ˆ ƒ ‹‹— ‘” ƒš‹— ‡š‹•–• ƒ– ȋš α -ͲǤʹͷȌǡ އ– —• …‘’—–‡ ‹ˆ –Ї ”ƒ–‡ ‘ˆ
                …Šƒ‰‡ ‘ˆ •Ž‘’‡ ‹• ’‘•‹–‹˜‡ ‘” ‡‰ƒ–‹˜‡Ǥ
                                           2
                                         d y
                 Rate of change of slope =   = 8
                                         dx 2
                                                            2
                                                          d y
                Since the rate of change of slope is positive    > 0  ,  y  assumes a minimum value.
                                                          dx 2
                 Ї ˜ƒŽ—‡ ‘ˆ ȋ›Ȍ ‹• ‰‘– „› •—„•–‹–—–‹‰ –Ї ˜ƒŽ—‡ ‘ˆ ȋšȌ ‹ ‡“—ƒ–‹‘ ȋͳǤ͵Ȍ


                                    2
                That is:  y = 4 0.25  +  2 ∗ −0.25  − 16 = −16.25
                 Ї ‹‹— ˜ƒŽ—‡ ‘ˆ –Ї ˆ—…–‹‘ ‹• ƒ• •Š‘™ ‹ ȏ ‹‰ ͳǤ͹ȐǤ
















                     [Fig 1.7: minimum value of function (   = 4   + 2   − 16)]
                                                             2











                                QP No. SSC/Q4401, Version 1.0, NSQF Level 7, Compliant with Aero and Auto Industries,
                    Page 8
   100   101   102   103   104   105   106   107   108   109   110