Page 107 - C:\Users\trainee\AppData\Local\Temp\msoEAA3.tmp
P. 107
Fundamentals of Stress and Vibration
[A Practical guide for aspiring Designers / Analysts] 1. Mathematics for Structural mechanics
′
2 2
1 f x P x Px 3
′
Equation . is of the form: f x = = 0 or f x = 0 , where f x = −
2 f x 4 2
2
d f x P x 3Px 2 P
′
Therefore, we have: f x = = − = 0 , by where, we get: x =
dx 2 2 3
P
P − P
3
Substituting the value of x in the expression . , we get: y = =
2 3
ȋȌ ȋȌǡ Ǥ
ȋ Ȍ ȋȌ ȋͳǤͷȌǣ
P 2 P 3
2
1 P P 1 P 4 P 4 P 2 18 P 2
3
3
Area A = 2 4 − 2 = − 54 = 2 36 ∗ 54 = 12 3
2 36
P 2
Therefore, we have the optimum area of the triangle to be:
12 3
ȋ Ȍ ǡ ǣ
2
2
d f x P x 3Px 2 d f x P 2
′
f x = = − , therefore, = − 3Px
dx 2 2 dx 2 2
ȋȌ ǡ ǣ
2
2
d f x P 2 P P 2 d y
= − 3P = − , which means < 0 , indicating maximum value.
dx 2 2 3 2 dx 2
ǣ ϐǡ ǡ
Ǥ
ǣ ʹͷǡ
ǣ
ȋͳʹǤͷȗͳʹǤͷȌǡ
ͳͷǤʹͷǤ
ǡ
ǡ
ǡ ǡ
Ǥ
Ǥ
QP No. SSC/Q4401, Version 1.0, NSQF Level 7, Compliant with Aero and Auto Industries,
Page 10

