Page 107 - C:\Users\trainee\AppData\Local\Temp\msoEAA3.tmp
P. 107

Fundamentals of Stress and Vibration
                [A Practical guide for aspiring Designers / Analysts]   1. Mathematics for Structural mechanics

                                                        ′
                                                                                                 2 2
                                                     1 f  x                                     P x    Px 3
                                                                       ′
                Equation    .     is of the form:   f x  =    = 0    or   f  x  = 0 , where   f x  =    −
                                                     2   f x                                     4      2
                                                        2
                                            d f x     P x   3Px 2                             P
                                     ′
                Therefore, we have:    f  x  =     =      −        = 0  , by where, we get:    x =
                                              dx       2      2                               3
                                                                                  P
                                                                              P −      P
                                                                                  3
                Substituting the value of  x  in the expression    .   , we get:  y =  =
                                                                                2      3
                 ‹…‡ ȋšȌ ‹• ‡“—ƒŽ –‘ ȋ›Ȍǡ –Ї –”‹ƒ‰Ž‡ ‹• ‡“—‹Žƒ–‡”ƒŽ ˆ‘” ‘’–‹— ƒ”‡ƒǤ

                 Ї ‘’–‹— ƒ”‡ƒ ȋ Ȍ ‹• ‰‘– „› •—„•–‹–—–‹‰ –Ї ˜ƒŽ—‡ ‘ˆ ȋšȌ ‹ ‡“—ƒ–‹‘ ȋͳǤͷȌǣ


                                    P  2     P  3
                                  2
                             1   P        P           1 P  4   P 4     P 2     18         P 2
                                    3
                                             3
                  Area  A  =    2   4   −    2     =         −  54   =    2     36 ∗ 54    =  12 3
                                                      2 36


                                                                        P 2
                Therefore, we have the optimum area of the triangle to be:
                                                                       12 3

                 – …ƒ ƒŽ•‘ „‡ •Š‘™ –Šƒ– –Ї ƒ”‡ƒ ȋ Ȍ ‹• –Ї ƒš‹— ˜ƒŽ—‡ǡ ƒ• ˆ‘ŽŽ‘™•ǣ

                                    2
                                                             2
                        d f x      P x   3Px 2             d  f x      P 2
                  ′
                 f  x  =       =       −         , therefore,       =     − 3Px
                          dx        2      2                  dx 2      2
                 —„•–‹–—–‹‰ –Ї ˜ƒŽ—‡ ‘ˆ ȋšȌ ‹ –Ї ƒ„‘˜‡ ‡š’”‡••‹‘ǡ ™‡ ‰‡–ǣ

                                                                  2
                  2
                 d  f x      P 2      P       P 2                d y
                         =      − 3P      = −     , which means      < 0  , indicating maximum value.
                   dx 2      2        3        2                 dx 2

                 ‘–‡ǣ ™Š‡‡˜‡” –Ї •— ‘ˆ –™‘ ˜ƒ”‹ƒ„އ• ‹• ϐ‹š‡†ǡ –Їǡ –Ї‹” ’”‘†—…– ™‘—ކ „‡ ƒš‹— ‘Ž›
                ™Š‡ –Ї› ƒ”‡ ‡“—ƒŽǤ

                 šƒ’Ž‡ǣ ‹ˆ  –Ї •—  ‘ˆ  –™‘  —„‡”• ‹•  ʹͷǡ  –Ї ƒš‹—  ˜ƒŽ—‡  ‘ˆ  –Ї‹” ’”‘†—…–  ‹•  ‰‹˜‡  „›ǣ
                ȋͳʹǤͷȗͳʹǤͷȌǡ ™Š‹…Š ‹• ͳͷ͸ǤʹͷǤ

                 •  ƒ  ’”ƒ…–‹…ƒŽ  …ƒ•‡ǡ  ™Š‡  –Ї  •—  ‘ˆ  –Š”‡‡  •‹†‡•  ‘ˆ  ƒ  …—„‘‹†  ‹•  ‰‹˜‡ǡ  –Ї  ˜‘Ž—‡  …‘—ކ  „‡
                ƒš‹‹œ‡† ™Š‡ –Ї •‹†‡• ƒ”‡ ‡“—ƒŽ –‘ ‡ƒ…Š ‘–Ї”ǡ –Šƒ– ‹•ǡ ‹– „‡…‘‡• ƒ …—„‡Ǥ


                 Š‹• Ž‘‰‹… …‘—ކ „‡ ‡š–‡†‡† –‘ ƒ› —„‡” ‘ˆ ˜ƒ”‹ƒ„އ•Ǥ




                                QP No. SSC/Q4401, Version 1.0, NSQF Level 7, Compliant with Aero and Auto Industries,
                   Page 10
   102   103   104   105   106   107   108   109   110   111   112