Page 115 - C:\Users\trainee\AppData\Local\Temp\msoEAA3.tmp
P. 115

Fundamentals of Stress and Vibration
                [A Practical guide for aspiring Designers / Analysts]   1. Mathematics for Structural mechanics
                                               2
                                                    3
                        :  if  θ = 90  then, we get     πR   , which is the volume of a hemisphere
                           1
                                               3
                                         4
                                              3
                if  θ = 180  then,we get     πR  , which is the volume of a sphere
                    1
                                         3
                ͳǤͶǤͷ  –ƒ†ƒ”†  –‡‰”ƒŽ•



                                    (  )                                        (  )    



                                   x                                          x n+1
                                                                                   + c
                                                                              n + 1
                              n
                             x (when(  n = −1))                              log e  x + c
                                     x   e                                    e x    + c


                                                                             e ax
                                    e ax                                           + c
                                                                              a

                                   sin  x                                   − cos  x + c

                                   cos  x                                    sin    x + c

                                                                                   x + c
                                   tan  x                                  log sec
                                                                             e
                                  log e    x                             (log x     + 1)x + c
                                                                             e

                                                                  a 2       x    x       x 2
                                        2
                                  a 2    − x                         sin −1      +          1 −    + c
                                                                  2         a    a       a 2

                      f x  ∗ g(x) [integr  ation by parts]      g x    f x   −        f x   ∗ g  x  dx
                                                                                            ′


                ͳǤͶǤ͸ ͳ  ‘”†‡”  ‹ˆˆ‡”‡–‹ƒŽ  “—ƒ–‹‘•
                        •–
                 Ї ‘”†‡” ‘ˆ ƒ †‡”‹˜ƒ–‹˜‡ †‡–‡”‹‡• –Ї ‘”†‡” ‘ˆ –Ї †‹ˆˆ‡”‡–‹ƒŽ ‡“—ƒ–‹‘Ǥ  šƒ’Ž‡ǡ ‹ˆ ‘”†‡” ‘ˆ –Ї
                †‡”‹˜ƒ–‹˜‡ ‹• Ǯ͵ǯǡ –Їǡ ‹– ‹• ƒ ͵  ‘”†‡” †‹ˆˆ‡”‡–‹ƒŽ ‡“—ƒ–‹‘Ǥ
                                           Ӡ
                 ˆ –Ї ‘”†‡” ‘ˆ –Ї †‡”‹˜ƒ–‹˜‡ ‹• Ǯǯǡ –Їǡ ‹– ‹• ƒ   ‘”†‡” †‹ˆˆ‡”‡–‹ƒŽ ‡“—ƒ–‹‘Ǥ  Ї †‡‰”‡‡ ‘ˆ –Ї
                                                               –Š
                †‹ˆˆ‡”‡–‹ƒŽ ‡“—ƒ–‹‘ ‹• –Ї ’‘™‡” ‘ˆ –Ї †‡”‹˜ƒ–‹˜‡Ǥ







                                QP No. SSC/Q4401, Version 1.0, NSQF Level 7, Compliant with Aero and Auto Industries,
                   Page 18
   110   111   112   113   114   115   116   117   118   119   120