Page 117 - C:\Users\trainee\AppData\Local\Temp\msoEAA3.tmp
P. 117

Fundamentals of Stress and Vibration
                [A Practical guide for aspiring Designers / Analysts]   1. Mathematics for Structural mechanics
                 —„•–‹–—–‹‰ –Ї ˜ƒŽ—‡ ‘ˆ Ǯ…ǯ ‹ ‡“—ƒ–‹‘ ȋͳǤʹͲȌǡ ™‡ ‰‡– –Ї ”‡Žƒ–‹‘•Š‹’ „‡–™‡‡ Ǯ›ǯ ƒ† Ǯšǯ –‘ „‡ǣ

                      k
                 y = x   − this is parabolic equation of degree  k .
                 ‘ ’Ž‘– –Ї …—”˜‡ǡ އ– —• ƒ••—‡ ȋ α ͵Ȍ ƒ• •Š‘™ ‹ ȏ ‹‰ ͳǤͳ͸Ȑ














                                                3
                  [Fig 1.16: parabola of form [y = x ]]


                 ‘–‡ǣ –Ї •‘Ž—–‹‘ –‘ ƒ› †‹ˆˆ‡”‡–‹ƒŽ ‡“—ƒ–‹‘ ‹• ƒŽŽ ƒ„‘—– ‡•–ƒ„Ž‹•Š‹‰ ƒ ”‡Žƒ–‹‘•Š‹’ „‡–™‡‡ –Ї
                †‡’‡†‡– ƒ† ‹†‡’‡†‡– ˜ƒ”‹ƒ„އ•Ǥ



                ͳǤͶǤ͹ ʹ  ‘”†‡”  ‹ˆˆ‡”‡–‹ƒŽ  “—ƒ–‹‘•
                        †

                   •‡˜‡”ƒŽ  ’”ƒ…–‹…ƒŽ  ‡‰‹‡‡”‹‰  •‹–—ƒ–‹‘•ǡ  •—…Š  ƒ•ǡ  ˆ”‡‡  ˜‹„”ƒ–‹‘ǡ  „—…Ž‹‰ǡ  ‡–…Ǥǡ  –Ї  ʹ   ‘”†‡”
                                                                                                     †
                †‹ˆˆ‡”‡–‹ƒŽ ‡“—ƒ–‹‘ ‹• …‘ˆ”‘–‡†Ǥ

                 šƒ’Ž‡  ͳǣ ϐ‹† –Ї ”‡Žƒ–‹‘•Š‹’ „‡–™‡‡ Ǯ›ǯ ƒ† Ǯ–ǯ ˆ”‘ –Ї †‹ˆˆ‡”‡–‹ƒŽ ‡“—ƒ–‹‘ ȋͳǤʹͳȌǡ ‰‹˜‡
                –Ї ‹‹–‹ƒŽ …‘†‹–‹‘ ȋ› α ͲȌ ƒ– ȋ– α ͲȌǤ
                   2
                  d y
                     + ky = 0   - - - - (1.21)
                  dt 2
                 ‹…‡ –Ї ‡“—ƒ–‹‘ ‹• ƒ ʹ  ‘”†‡” Š‘‘‰‡‘—• †‹ˆˆ‡”‡–‹ƒŽ ‡“—ƒ–‹‘ǡ ‹– ‹• ‡ƒ•› –‘ ’”‘’‘•‡ ƒ •‘Ž—–‹‘Ǥ
                                       †
                 – …ƒ „‡ ‘„•‡”˜‡† –Šƒ–ǡ —’‘ †‹ˆˆ‡”‡–‹ƒ–‹‰ ƒ •‹—•‘‹†ƒŽ ‘” ƒ …‘•‹—•‘‹†ƒŽ ˆ—…–‹‘ –™‹…‡ǡ ‹ –Ї
                ‰‹˜‡ †‹ˆˆ‡”‡–‹ƒŽ ‡“—ƒ–‹‘ǡ ™‡ ‰‡– „ƒ… –‘ –Ї •ƒ‡ ˆ—…–‹‘ǡ „—– ™‹–Š ƒ ‡‰ƒ–‹˜‡ •‹‰Ǥ

                 ‡– —• ƒ••—‡ –Ї •‘Ž—–‹‘ –‘ –Ї †‹ˆˆ‡”‡–‹ƒŽ ‡“—ƒ–‹‘ –‘ „‡ ‘ˆ –Ї ˆ‘”ǣ    y = a sinct    - - - - (1.22)
                 Ї …Š‘‹…‡ ‘ˆ •‘Ž—–‹‘ ƒŽ•‘ ‹• ‹ Ž‹‡ ™‹–Š –Ї ‹‹–‹ƒŽ …‘†‹–‹‘ •—‰‰‡•–‡†Ǥ

                                                      dy
                Differentiating equation    .      , we get:    = ca cos ct
                                                      dx

                                             2
                                            d y
                                                     2
                Differentiating again, we get:    = − c a sinct
                                            dx 2
                                QP No. SSC/Q4401, Version 1.0, NSQF Level 7, Compliant with Aero and Auto Industries,
                   Page 20
   112   113   114   115   116   117   118   119   120   121   122