Page 114 - C:\Users\trainee\AppData\Local\Temp\msoEAA3.tmp
P. 114

Fundamentals of Stress and Vibration                1. Mathematics for Structural mechanics
                 [A Practical guide for aspiring Designers / Analysts]
                 ‘•‹†‡” ƒ •ƒŽŽ •–”‹’ ‘ˆ ™‹†–Š Ǯ †Ʌǯ ƒ† އ‰–ŠȀ…‹”…—ˆ‡”‡…‡ ǮʹɎ” α ʹɎ  •‹ɅǯǤ  Ї ƒ”‡ƒ ‘ˆ –Ї
                •–”‹’ ‹• ‰‹˜‡ „›ǣ ȏʹɎ  •‹Ʌ ȗ  †ɅȐǤ

                 ‡– —• ‹–‡‰”ƒ–‡ –Ї ƒ”‡ƒ ‘ˆ –Ї ‡Ž‡‡–ƒŽ •–”‹’ ˆ”‘ ǮͲ –‘ ɅͳǯǤ



                 θ 1                       θ 1
                                          2
                                                              2
                   2π Rsinθ ∗ Rdθ  =  2πR   sinθ  dθ  =  2πR  1 − cosθ    - - - - (1.14)
                                                                       1
                0                          0
                 “—ƒ–‹‘ ȋͳǤͳͶȌ ‹• –Šƒ– ‘ˆ –Ї •—”ˆƒ…‡ ƒ”‡ƒ ‘ˆ –Ї •’Ї”‹…ƒŽ …ƒ’Ǥ

                 ‡– —• ˜‡”‹ˆ› –Ї ƒ……—”ƒ…› ‘ˆ ‡“—ƒ–‹‘ ȋͳǤͳͶȌǤ  ˆ ™‡ •—„•–‹–—–‡ ˆ‘” ǮɅͳ α ͻͲ ǯǡ ™‡ ‰‡– ǮʹɎ  ǯ ™Š‹…Š ‹•
                                                                                                   ʹ
                –Ї •—”ˆƒ…‡ ƒ”‡ƒ ‘ˆ –Ї Ї‹•’Ї”‡Ǥ  ˆ ™‡ •—„•–‹–—–‡ ˆ‘” ǮɅͳ α ͳͺͲǯǡ ™‡ ‰‡– ǮͶɎ  ǯ ™Š‹…Š ‹• –Ї ƒ”‡ƒ ‘ˆ
                                                                                        ʹ
                –Ї •’Ї”‡Ǥ
                 Ї ˜‘Ž—‡ ‘ˆ –Ї •’Ї”‡ ‹• …‘’—–‡† ƒ• ˆ‘ŽŽ‘™•ǣ

                ȋ ‘Ž—‡ ‘ˆ –Ї ‡Ž‡‡–ƒŽ •–”‹’ α ȏƒ”‡ƒ ‘ˆ –Ї ‡Ž‡‡–ƒŽ •–”‹’ ȗ Ї‹‰Š– ȋ†ŠȌȐȌ


                                 2
                 V strip  = π Rsinθ  ∗  Rdθ sinθ    physically, this the volume of the plate
                 Ї ˜‘Ž—‡ ‘ˆ –Ї •’Ї”‹…ƒŽ …ƒ’ ‹• ‰‹˜‡ „›ǣ

                 θ 1                              θ 1                 θ 1
                   π Rsinθ  ∗  Rdθ sinθ   =  πR   sin θ  dθ  =  πR   sin θ  1 − cos θ  dθ   - - - - (1.15)
                            2
                                                3
                                                       3
                                                                    3
                                                                                     2
                 0                                0                  0
                 ‘ ˆƒ…‹Ž‹–ƒ–‡ ‹–‡‰”ƒ–‹‘ǡ އ– —• ƒ‡ –Ї ˆ‘ŽŽ‘™‹‰ •—„•–‹–—–‹‘Ǥ
                                                         dt
                Assume  cosθ = t , differentiating, we get     = − sinθ  or  dt = − sin θ  dθ
                                                         dθ


                 Ž•‘ ™Š‡  (θ = θ ),  t = cosθ  , and, when  θ = 0 ,  t = 1 .
                                 1
                                            1
                 Ї”‡ˆ‘”‡ǡ ‡“—ƒ–‹‘ ȋͳǤͳͷȌ …ƒ „‡ ”‡™”‹––‡ ƒ•ǣ

                     cos θ 1                  cos θ 1
                                                                      t 3  cos θ 1
                                                    2
                                                                    3
                    3
                                 2
                                             3
                 πR   −  1 − t   dt  =  πR    t − 1   dt  =  πR               −  t  cos θ 1
                                                                       3          1
                      1                        1                         1
                 —„•–‹–—–‹‰ –Ї —’’‡” ƒ† Ž‘™‡” Ž‹‹–•ǡ ™‡ ‰‡–ǣ
                         3
                                                          3
                      cos θ 1  1                      cos θ 1  2
                    3
                                                    3
                 πR          −  −  cosθ + 1   =  πR          +   −  cosθ     - - - - (1.16)
                                       1
                                                                        1
                        3      3                         3     3
                              QP No. SSC/Q4401, Version 1.0, NSQF Level 7, Compliant with Aero and Auto Industries,   Page 17
   109   110   111   112   113   114   115   116   117   118   119