Page 118 - C:\Users\trainee\AppData\Local\Temp\msoEAA3.tmp
P. 118
Fundamentals of Stress and Vibration 1. Mathematics for Structural mechanics
[A Practical guide for aspiring Designers / Analysts]
2
d y
Substituting the values of ‘y’ and in equation . , we get:
dx 2
2
2
− c a sinct + k a sin ct = 0 = −c + k asinct = 0
ȋ
Ȍ
ϐ
ȋȌǡ ȋ-
Ϊ Ȍ Ǥ
ʹ
2
Therefore,we have: k − c = 0 = c = K
Ǯ
ǯ ȋͳǤʹʹȌǡ Ǯǯ Ǯǯ ǣ
y = a sin kt
ȏ ͳǤͳȐ
[Fig 1.17: sine curve of the form y = a sin kt]
ʹǣ ȋͳǤʹ͵Ȍǡ
Ǥ
Ǯǯ Ǯǯ ȋͳǤʹ͵ȌǤ
2
d y dy
c 1 + c 2 + c y = 0 - - - - (1.23)
3
dt 2 dt
bt
The solution for equation . is of the form: y t = pe + qe
at
ǡ Ǯǯ Ǯǯ
ȋͳǤʹͶȌǣ
2
c m + c m + c = 0 - - - - (1.24)
2
3
1
ǡ ǡ
ȋͳǤʹ͵Ȍǡ ǡ Ǥ
ϐ
ȋͳǤʹͶȌǤ
2
2
2
c 2 c − 4c c c 2 c − 4c c c 2 c − 4c c
3 1
3 1
3 1
− ± 2 , where, a = − + 2 and b = − − 2
2c 1 2c 1 2c 1 2c 1 2c 1 2c 1
QP No. SSC/Q4401, Version 1.0, NSQF Level 7, Compliant with Aero and Auto Industries, Page 21

