Page 118 - C:\Users\trainee\AppData\Local\Temp\msoEAA3.tmp
P. 118

Fundamentals of Stress and Vibration                1. Mathematics for Structural mechanics
                 [A Practical guide for aspiring Designers / Analysts]

                                                  2
                                                d y
                Substituting the values of ‘y’ and       in equation    .      , we get:
                                                dx 2
                                                   2
                    2
                 − c a sinct + k a sin ct  = 0  =   −c + k  asinct = 0
                 ‹…‡ ȋ•‹ …–Ȍ ‹• œ‡”‘ ‘Ž› ˆ‘” •’‡…‹ϐ‹… ‹•–ƒ…‡• ‘ˆ ȋ–Ȍǡ ȋ-… Ϊ Ȍ ‰‘‡• –‘ œ‡”‘Ǥ
                                                                    ʹ
                                        2
                Therefore,we have:  k − c = 0  =  c =  K
                 —„•–‹–—–‹‰ –Ї ˜ƒŽ—‡ ‘ˆ Ǯ…ǯ ‹ ‡“—ƒ–‹‘ ȋͳǤʹʹȌǡ ™‡ ‰‡– –Ї ”‡Žƒ–‹‘•Š‹’ „‡–™‡‡ Ǯ›ǯ ƒ† Ǯ–ǯ –‘ „‡ǣ

                 y = a sin  kt

                 Ї …—”˜‡ ‹• •‹—•‘‹†ƒŽ ƒ• •Š‘™ ‹ ȏ ‹‰ ͳǤͳ͹Ȑ








                [Fig 1.17: sine curve of the form y = a sin kt]


                 šƒ’Ž‡  ʹǣ   ‘•‹†‡” ‡“—ƒ–‹‘ ȋͳǤʹ͵Ȍǡ ™Š‹…Š ‹• –Ї –›’‹…ƒŽ ‡š’”‡••‹‘ ˆ‘” †ƒ’‡† ˜‹„”ƒ–‹‘Ǥ
                 •–ƒ„Ž‹•Š –Ї ”‡Žƒ–‹‘•Š‹’ „‡–™‡‡ Ǯ›ǯ ƒ† Ǯ–ǯ ˆ‘” –Ї †‹ˆˆ‡”‡–‹ƒŽ ‡“—ƒ–‹‘ ȋͳǤʹ͵ȌǤ


                    2
                   d y     dy
                 c 1   + c 2  + c  y = 0   - - - - (1.23)
                                 3
                   dt 2     dt
                                                                            bt
                The solution for equation    .      is of the form:  y t  = pe + qe
                                                                      at
                 Ї”‡ǡ Ǯƒǯ ƒ† Ǯ„ǯ ƒ”‡ –Ї ”‘‘–• ‘ˆ –Ї “—ƒ†”ƒ–‹… ‡“—ƒ–‹‘ ȋͳǤʹͶȌǣ

                     2
                 c m + c m + c  = 0   - - - - (1.24)
                         2
                                3
                  1
                 Ї •‘Ž—–‹‘ ’”‘’‘•‡† ‹• ‹ –Ї ‡š’‘‡–‹ƒŽ ˆ‘” ƒ† †‹ˆˆ‡”‡–‹ƒ–‹‰ –Ї ‡š’‘‡–‹ƒŽ ˆ‘” ‰‹˜‡•
                –Ї ‡š’‘‡– –‡” —Ž–‹’Ž‹‡† „› ƒ …‘•–ƒ–ǡ ‡ƒ‹‰ǡ •—„•–‹–—–‹‰ –Ї •‘Ž—–‹‘ ‹ –Ї †‹ˆˆ‡”‡–‹ƒŽ
                ‡“—ƒ–‹‘ ȋͳǤʹ͵Ȍǡ ™‡ —•– ‰‡– œ‡”‘ǡ •ƒ–‹•ˆ›‹‰ –Ї †‹ˆˆ‡”‡–‹ƒŽ ‡“—ƒ–‹‘Ǥ

                 ‡– —• ‘™ ϐ‹† –Ї ”‘‘–• ‘ˆ –Ї “—ƒ†”ƒ–‹… ‡“—ƒ–‹‘ ȋͳǤʹͶȌǤ

                                                                                                 2
                                                                2
                             2
                    c 2     c − 4c c                   c 2     c − 4c c                 c 2    c − 4c c
                                   3 1
                                                                                                      3 1
                                                                      3 1
                 −       ±   2          , where,  a = −      +  2           and   b = −      −  2
                    2c 1       2c 1                    2c 1       2c 1                 2c 1       2c 1

                              QP No. SSC/Q4401, Version 1.0, NSQF Level 7, Compliant with Aero and Auto Industries,   Page 21
   113   114   115   116   117   118   119   120   121   122   123