Page 116 - C:\Users\trainee\AppData\Local\Temp\msoEAA3.tmp
P. 116
Fundamentals of Stress and Vibration 1. Mathematics for Structural mechanics
[A Practical guide for aspiring Designers / Analysts]
n
d y n
Example: has order n and degree n.
dx n
ͳǣ
ǡ
Ǥ
ȋ
Ȍǡ ȋȌ – ȋ Ȍ ȋͳ α ͳȌ
ȋʹ α ʹȌǤ
ǡ ǣ
Rate of change of temprature ∝ Instantaneous temperature
dT dT
= ∝ T = = −cT - - - - (1.17)
dt dt
ȋͳǤͳȌ
Ǥ
ȋͳǤͳȌ ǡ ǣ
T 2 t 2
dT T 2 T 2
= −c dt = log = −c t − t = = e −c t 2 −t 1 or T = T e −c t 2 −t 1 - - - - (1.18)
1
2
2
1
T T 1 T 1
T 1 t 1
ǡ ȋ ʹȌ ȋ ͳȌ
e c t 2 −t 1
ʹǣ Ǯǯ Ǯǯǡ ǡ ȋ α ͳȌ ȋα ͳȌǤ
ǣ
dy y
= k - - - - (1.19)
dx x
dy dx
Equation . can be rewritten as: = k = log y = k log x + c
e
e
y x
y
Simplifying the above expression, we get: log y − k log x = c = log = c
e
e
e
x k
Upon further simplification, we get: y = x e - - - - (1.20)
k c
ȋ α ͳȌ ȋ α ͳȌ ȋͳǤʹͲȌǡ ǣ
0
c
1 = e ,we know that e = 1 , therefore c = 0 .
QP No. SSC/Q4401, Version 1.0, NSQF Level 7, Compliant with Aero and Auto Industries, Page 19

