Page 116 - C:\Users\trainee\AppData\Local\Temp\msoEAA3.tmp
P. 116

Fundamentals of Stress and Vibration                1. Mathematics for Structural mechanics
                 [A Practical guide for aspiring Designers / Analysts]
                             n
                            d y  n
                Example:           has order n and degree n.
                            dx n


                 šƒ’Ž‡  ͳǣ  ‡– —• …‘•‹†‡” ƒ •‹–—ƒ–‹‘ ™Š‡”‡ ƒ …‘’‘‡– ‹• …‘‘Ž‹‰ǡ ƒ† –Ї ”ƒ–‡ ‘ˆ …‘‘Ž‹‰ ‹•
                ’”‘’‘”–‹‘ƒŽ  –‘  –Ї  ‹•–ƒ–ƒ‡‘—•  –‡’‡”ƒ–—”‡  ‘ˆ  –Ї  …‘’‘‡–  ‹–•‡ŽˆǤ   ••—‹‰  ƒ
                ’”‘’‘”–‹‘ƒŽ‹–› …‘•–ƒ– ȋ…Ȍǡ ‡•–ƒ„Ž‹•Š ƒ –‹‡ ȋ–Ȍ – –‡’‡”ƒ–—”‡ ȋ Ȍ ”‡Žƒ–‹‘•Š‹’ ƒ– ȋ–ͳ α  ͳȌ ƒ†
                ȋ–ʹ α  ʹȌǤ

                 ƒ–Їƒ–‹…ƒŽŽ›ǡ ™‡ Šƒ˜‡ǣ

                  Rate of change of temprature  ∝  Instantaneous temperature


                   dT         dT
                =     ∝ T  =     = −cT   - - - - (1.17)
                   dt         dt
                 Ї ‡‰ƒ–‹˜‡ •‹‰ ‹ ‡“—ƒ–‹‘ ȋͳǤͳ͹Ȍ ‹†‹…ƒ–‡• –Šƒ– –Ї –‡’‡”ƒ–—”‡ ‹• †‡…”‡ƒ•‹‰ ™‹–Š –‹‡Ǥ

                 ‡™”‹–‹‰ ‡“—ƒ–‹‘ ȋͳǤͳ͹Ȍ ƒ† ‹–‡‰”ƒ–‹‰ǡ ™‡ ‰‡–ǣ


                  T 2        t 2
                    dT                  T 2                  T 2
                       = −c   dt  =  log   = −c t − t    =     = e −c t 2 −t 1      or  T = T  e −c t 2 −t 1      - - - - (1.18)
                                                      1
                                                  2
                                                                                2
                                                                                     1
                    T                    T 1                 T 1
                 T 1        t 1

                 – …ƒ „‡ ‘„•‡”˜‡† –Šƒ–ǡ –‡’‡”ƒ–—”‡ ȋ ʹȌ ‹• ‰‘– „› —Ž–‹’Ž›‹‰ ȋ ͳȌ „› ƒ ˆƒ…–‘”    e c t 2 −t 1


                 šƒ’Ž‡  ʹǣ †‡”‹˜‡ ƒ† ’Ž‘– –Ї ”‡Žƒ–‹‘•Š‹’ „‡–™‡‡ Ǯ›ǯ ƒ† Ǯšǯǡ ’”‘˜‹†‡†ǡ ™Š‡ ȋš α ͳȌ ƒ– ȋ›α ͳȌǤ
                 Ї †‹ˆˆ‡”‡–‹ƒŽ ‡“—ƒ–‹‘ ‹• ‰‹˜‡ „›ǣ


                 dy      y
                    = k       - - - - (1.19)
                 dx      x

                                                      dy       dx
                Equation    .       can be rewritten as:       = k      =  log y = k log x + c
                                                                         e
                                                                                   e
                                                       y        x
                                                                                     y
                Simplifying the above expression, we get:   log y − k log x = c  =  log     = c
                                                                    e
                                                                                  e
                                                           e
                                                                                    x k
                Upon further simplification, we get:  y = x e    - - - - (1.20)
                                                       k c
                 ’’Ž›‹‰ –Ї ‹‹–‹ƒŽ …‘†‹–‹‘• ‘ˆ ȋš α ͳȌ ƒ† ȋ› α ͳȌ –‘ ‡“—ƒ–‹‘ ȋͳǤʹͲȌǡ ™‡ ‰‡–ǣ

                                       0
                      c
                 1 = e  ,we know that  e = 1 , therefore  c = 0 .


                              QP No. SSC/Q4401, Version 1.0, NSQF Level 7, Compliant with Aero and Auto Industries,   Page 19
   111   112   113   114   115   116   117   118   119   120   121