Page 13 - C:\Users\trainee\AppData\Local\Temp\msoEAA3.tmp
P. 13

Document Title
                 Fundamentals of Stress and Vibration                              2. Engineering Mechanics   Chapter
                 [A Practical guide for aspiring Designers / Analysts]


                 ‘‹– –‘ ’‘†‡”ǣ ™‘” †‘‡ ˆ‘” ‘–‹‘ ƒŽ‘‰ ƒ …—”˜‡ ‘” ƒ ‹…Ž‹‡† •–”ƒ‹‰Š– Ž‹‡ „› ˆ”‹…–‹‘
                ƒŽ™ƒ›• †‡’‡†• ‘ –Ї Š‘”‹œ‘–ƒŽ †‹•’Žƒ…‡‡–ǡ ˆ”‹…–‹‘ …‘‡ˆϐ‹…‹‡– ƒ† ™‡‹‰Š–Ǥ  ‡– —• ƒƒŽ›œ‡ –Ї
                •ƒ‡ǣ
                 ‘•‹†‡” ƒ ’‘‹– ƒ•• ‡‰‘–‹ƒ–‹‰ ƒ …—”˜‡† ˆ”‹…–‹‘ƒŽ –”ƒ…ǡ ƒ• •Š‘™ ‹ ȏ ‹‰ ʹǤ͹ȐǤ


















                                                           - - - - (2.12)







                                   [Fig 2.7: a point mass negotiating a frictional curved track]

                 The frictional work done is given as:

                  Frictional work done =  N ∗ μ ∗ ds arc length   =  mg cosθ ∗ μ ∗ ds

                 We know from [Fig 2.7] that,     ds cos θ = dx

                 Therefore, the frictional work done is given by:    mg ∗ μ ∗ dx

                 Integrating the frictional work done for the entire curve between the limits of ‘x’ (0 to L), we get:

                                             L
                  Total friction work done =   μmg dx = μmg L
                                            0






                              QP No. SSC/Q4401, Version 1.0, NSQF Level 7, Compliant with Aero and Auto Industries,   Page 13 age 13
                                                                                                 P
                                                Copyright Diary No – 9119/2018-CO/L
   8   9   10   11   12   13   14   15   16   17   18