Page 148 - C:\Users\trainee\AppData\Local\Temp\msoEAA3.tmp
P. 148

Fundamentals of Stress and Vibration                1. Mathematics for Structural mechanics
                 [A Practical guide for aspiring Designers / Analysts]

                                      OD      x
                 ′
                x = OB + BC ,  OB =       =         and  BC = AB sin θ
                                     cos θ  cos θ
                                                                                 x
                                                                           ′
                AB =  y − x tanθ  , therefore,  BC =  y − x tan θ  sinθ  and   x =      +   y − x tan θ  sin θ
                                                                               cosθ
                                                                      2
                                                  x                sin θ
                                           ′
               Simplifying for (x’) we get:   x =      +  y sinθ − x
                                                cosθ                cos θ
                          x                                   x
                    ′
                                                       ′
                                      2
                                                                      2
               =  x =           1 − sin θ  + y sinθ  =  x =        cos θ  + y sinθ
                        cos θ                               cosθ
                                     ′
               Therefore, we have:   x = x cosθ + y sin θ    - - - - (1.55)
                                                                            sinθ
                                  ′
                                                            ′
                 ′
                y = AB cos θ  =  y =  y − x tanθ  cos θ  =  y =  y cos θ − x      cos θ
                                                                            cos θ
               Therefore, we have:   y = y cos θ − x sin θ    - - - - (1.56)
                                     ′
               Rewriting equation (1.55) and (1.56) in the matrix from, gives us a relationship between the
               original and transformed coordinates.

                  cosθ   sinθ  x     x′
                                   =       - - - - (1.57)
                 −sinθ cosθ          y′

               The equation (1.57) could be recast in terms of the basis vectors (using dot product), that is, (e – for
               original coordinate system) and (e’ – for the transformed coordinate system).

                          ′
                  ′
                 e ∙ e   e ∙ e   x     x′
                   1  1   1   2       =       - - - - (1.58)
                  ′
                          ′
                 e ∙ e 1  e ∙ e 2      y′
                          2
                  2
               In a 3D space, equation (1.57) could be represented as follows:
                  cosθ    sinθ   0  x     x ′
                                           ′
                 − sinθ   cos θ 0   y  =  y
                    0      0     1  z     z ′















                              QP No. SSC/Q4401, Version 1.0, NSQF Level 7, Compliant with Aero and Auto Industries,   Page 51
   143   144   145   146   147   148   149   150   151   152   153